Metamath Proof Explorer


Theorem mndsssgrp

Description: The class of all monoids is a proper subclass of the class of all semigroups. (Contributed by AV, 29-Jan-2020)

Ref Expression
Assertion mndsssgrp
|- Mnd C. Smgrp

Proof

Step Hyp Ref Expression
1 mndsgrp
 |-  ( x e. Mnd -> x e. Smgrp )
2 1 ssriv
 |-  Mnd C_ Smgrp
3 sgrpnmndex
 |-  E. x e. Smgrp x e/ Mnd
4 ssexnelpss
 |-  ( ( Mnd C_ Smgrp /\ E. x e. Smgrp x e/ Mnd ) -> Mnd C. Smgrp )
5 2 3 4 mp2an
 |-  Mnd C. Smgrp