Metamath Proof Explorer


Theorem mndsssgrp

Description: The class of all monoids is a proper subclass of the class of all semigroups. (Contributed by AV, 29-Jan-2020)

Ref Expression
Assertion mndsssgrp Mnd ⊊ Smgrp

Proof

Step Hyp Ref Expression
1 mndsgrp ( 𝑥 ∈ Mnd → 𝑥 ∈ Smgrp )
2 1 ssriv Mnd ⊆ Smgrp
3 sgrpnmndex 𝑥 ∈ Smgrp 𝑥 ∉ Mnd
4 ssexnelpss ( ( Mnd ⊆ Smgrp ∧ ∃ 𝑥 ∈ Smgrp 𝑥 ∉ Mnd ) → Mnd ⊊ Smgrp )
5 2 3 4 mp2an Mnd ⊊ Smgrp