Metamath Proof Explorer
		
		
		
		Description:  The class of all monoids is a proper subclass of the class of all
     semigroups.  (Contributed by AV, 29-Jan-2020)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | mndsssgrp | ⊢  Mnd  ⊊  Smgrp | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndsgrp | ⊢ ( 𝑥  ∈  Mnd  →  𝑥  ∈  Smgrp ) | 
						
							| 2 | 1 | ssriv | ⊢ Mnd  ⊆  Smgrp | 
						
							| 3 |  | sgrpnmndex | ⊢ ∃ 𝑥  ∈  Smgrp 𝑥  ∉  Mnd | 
						
							| 4 |  | ssexnelpss | ⊢ ( ( Mnd  ⊆  Smgrp  ∧  ∃ 𝑥  ∈  Smgrp 𝑥  ∉  Mnd )  →  Mnd  ⊊  Smgrp ) | 
						
							| 5 | 2 3 4 | mp2an | ⊢ Mnd  ⊊  Smgrp |