Metamath Proof Explorer
Description: The class of all monoids is a proper subclass of the class of all
semigroups. (Contributed by AV, 29-Jan-2020)
|
|
Ref |
Expression |
|
Assertion |
mndsssgrp |
⊢ Mnd ⊊ Smgrp |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndsgrp |
⊢ ( 𝑥 ∈ Mnd → 𝑥 ∈ Smgrp ) |
| 2 |
1
|
ssriv |
⊢ Mnd ⊆ Smgrp |
| 3 |
|
sgrpnmndex |
⊢ ∃ 𝑥 ∈ Smgrp 𝑥 ∉ Mnd |
| 4 |
|
ssexnelpss |
⊢ ( ( Mnd ⊆ Smgrp ∧ ∃ 𝑥 ∈ Smgrp 𝑥 ∉ Mnd ) → Mnd ⊊ Smgrp ) |
| 5 |
2 3 4
|
mp2an |
⊢ Mnd ⊊ Smgrp |