Metamath Proof Explorer


Theorem mndsssgrp

Description: The class of all monoids is a proper subclass of the class of all semigroups. (Contributed by AV, 29-Jan-2020)

Ref Expression
Assertion mndsssgrp Could not format assertion : No typesetting found for |- Mnd C. Smgrp with typecode |-

Proof

Step Hyp Ref Expression
1 mndsgrp Could not format ( x e. Mnd -> x e. Smgrp ) : No typesetting found for |- ( x e. Mnd -> x e. Smgrp ) with typecode |-
2 1 ssriv Could not format Mnd C_ Smgrp : No typesetting found for |- Mnd C_ Smgrp with typecode |-
3 sgrpnmndex Could not format E. x e. Smgrp x e/ Mnd : No typesetting found for |- E. x e. Smgrp x e/ Mnd with typecode |-
4 ssexnelpss Could not format ( ( Mnd C_ Smgrp /\ E. x e. Smgrp x e/ Mnd ) -> Mnd C. Smgrp ) : No typesetting found for |- ( ( Mnd C_ Smgrp /\ E. x e. Smgrp x e/ Mnd ) -> Mnd C. Smgrp ) with typecode |-
5 2 3 4 mp2an Could not format Mnd C. Smgrp : No typesetting found for |- Mnd C. Smgrp with typecode |-