| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prhash2ex |  |-  ( # ` { 0 , 1 } ) = 2 | 
						
							| 2 |  | eqid |  |-  { 0 , 1 } = { 0 , 1 } | 
						
							| 3 |  | prex |  |-  { 0 , 1 } e. _V | 
						
							| 4 |  | eqeq1 |  |-  ( x = u -> ( x = 0 <-> u = 0 ) ) | 
						
							| 5 | 4 | ifbid |  |-  ( x = u -> if ( x = 0 , 0 , 1 ) = if ( u = 0 , 0 , 1 ) ) | 
						
							| 6 |  | eqidd |  |-  ( y = v -> if ( u = 0 , 0 , 1 ) = if ( u = 0 , 0 , 1 ) ) | 
						
							| 7 | 5 6 | cbvmpov |  |-  ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) = ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) | 
						
							| 8 | 7 | opeq2i |  |-  <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. = <. ( +g ` ndx ) , ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) >. | 
						
							| 9 | 8 | preq2i |  |-  { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) >. } | 
						
							| 10 | 9 | grpbase |  |-  ( { 0 , 1 } e. _V -> { 0 , 1 } = ( Base ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) ) | 
						
							| 11 | 3 10 | ax-mp |  |-  { 0 , 1 } = ( Base ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) | 
						
							| 12 | 11 | eqcomi |  |-  ( Base ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) = { 0 , 1 } | 
						
							| 13 | 3 3 | mpoex |  |-  ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) e. _V | 
						
							| 14 | 9 | grpplusg |  |-  ( ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) e. _V -> ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) = ( +g ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) ) | 
						
							| 15 | 13 14 | ax-mp |  |-  ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) = ( +g ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) | 
						
							| 16 | 15 | eqcomi |  |-  ( +g ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) = ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) | 
						
							| 17 | 2 12 16 | sgrp2nmndlem4 |  |-  ( ( # ` { 0 , 1 } ) = 2 -> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } e. Smgrp ) | 
						
							| 18 |  | neleq1 |  |-  ( m = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } -> ( m e/ Mnd <-> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } e/ Mnd ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ( # ` { 0 , 1 } ) = 2 /\ m = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) -> ( m e/ Mnd <-> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } e/ Mnd ) ) | 
						
							| 20 | 2 12 16 | sgrp2nmndlem5 |  |-  ( ( # ` { 0 , 1 } ) = 2 -> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } e/ Mnd ) | 
						
							| 21 | 17 19 20 | rspcedvd |  |-  ( ( # ` { 0 , 1 } ) = 2 -> E. m e. Smgrp m e/ Mnd ) | 
						
							| 22 | 1 21 | ax-mp |  |-  E. m e. Smgrp m e/ Mnd |