Step |
Hyp |
Ref |
Expression |
1 |
|
prhash2ex |
|- ( # ` { 0 , 1 } ) = 2 |
2 |
|
eqid |
|- { 0 , 1 } = { 0 , 1 } |
3 |
|
prex |
|- { 0 , 1 } e. _V |
4 |
|
eqeq1 |
|- ( x = u -> ( x = 0 <-> u = 0 ) ) |
5 |
4
|
ifbid |
|- ( x = u -> if ( x = 0 , 0 , 1 ) = if ( u = 0 , 0 , 1 ) ) |
6 |
|
eqidd |
|- ( y = v -> if ( u = 0 , 0 , 1 ) = if ( u = 0 , 0 , 1 ) ) |
7 |
5 6
|
cbvmpov |
|- ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) = ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) |
8 |
7
|
opeq2i |
|- <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. = <. ( +g ` ndx ) , ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) >. |
9 |
8
|
preq2i |
|- { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) >. } |
10 |
9
|
grpbase |
|- ( { 0 , 1 } e. _V -> { 0 , 1 } = ( Base ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) ) |
11 |
3 10
|
ax-mp |
|- { 0 , 1 } = ( Base ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) |
12 |
11
|
eqcomi |
|- ( Base ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) = { 0 , 1 } |
13 |
3 3
|
mpoex |
|- ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) e. _V |
14 |
9
|
grpplusg |
|- ( ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) e. _V -> ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) = ( +g ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) ) |
15 |
13 14
|
ax-mp |
|- ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) = ( +g ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) |
16 |
15
|
eqcomi |
|- ( +g ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) = ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( u = 0 , 0 , 1 ) ) |
17 |
2 12 16
|
sgrp2nmndlem4 |
|- ( ( # ` { 0 , 1 } ) = 2 -> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } e. Smgrp ) |
18 |
|
neleq1 |
|- ( m = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } -> ( m e/ Mnd <-> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } e/ Mnd ) ) |
19 |
18
|
adantl |
|- ( ( ( # ` { 0 , 1 } ) = 2 /\ m = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } ) -> ( m e/ Mnd <-> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } e/ Mnd ) ) |
20 |
2 12 16
|
sgrp2nmndlem5 |
|- ( ( # ` { 0 , 1 } ) = 2 -> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( x = 0 , 0 , 1 ) ) >. } e/ Mnd ) |
21 |
17 19 20
|
rspcedvd |
|- ( ( # ` { 0 , 1 } ) = 2 -> E. m e. Smgrp m e/ Mnd ) |
22 |
1 21
|
ax-mp |
|- E. m e. Smgrp m e/ Mnd |