Metamath Proof Explorer


Theorem sgrp2nmndlem5

Description: Lemma 5 for sgrp2nmnd : M is not a monoid. (Contributed by AV, 29-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s
|- S = { A , B }
mgm2nsgrp.b
|- ( Base ` M ) = S
sgrp2nmnd.o
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) )
Assertion sgrp2nmndlem5
|- ( ( # ` S ) = 2 -> M e/ Mnd )

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s
 |-  S = { A , B }
2 mgm2nsgrp.b
 |-  ( Base ` M ) = S
3 sgrp2nmnd.o
 |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) )
4 1 hashprdifel
 |-  ( ( # ` S ) = 2 -> ( A e. S /\ B e. S /\ A =/= B ) )
5 eqid
 |-  ( +g ` M ) = ( +g ` M )
6 1 2 3 5 sgrp2nmndlem2
 |-  ( ( A e. S /\ B e. S ) -> ( A ( +g ` M ) B ) = A )
7 6 3adant3
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) B ) = A )
8 simp3
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> A =/= B )
9 7 8 eqnetrd
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) B ) =/= B )
10 9 olcd
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) A ) =/= A \/ ( A ( +g ` M ) B ) =/= B ) )
11 oveq2
 |-  ( y = A -> ( A ( +g ` M ) y ) = ( A ( +g ` M ) A ) )
12 id
 |-  ( y = A -> y = A )
13 11 12 neeq12d
 |-  ( y = A -> ( ( A ( +g ` M ) y ) =/= y <-> ( A ( +g ` M ) A ) =/= A ) )
14 oveq2
 |-  ( y = B -> ( A ( +g ` M ) y ) = ( A ( +g ` M ) B ) )
15 id
 |-  ( y = B -> y = B )
16 14 15 neeq12d
 |-  ( y = B -> ( ( A ( +g ` M ) y ) =/= y <-> ( A ( +g ` M ) B ) =/= B ) )
17 13 16 rexprg
 |-  ( ( A e. S /\ B e. S ) -> ( E. y e. { A , B } ( A ( +g ` M ) y ) =/= y <-> ( ( A ( +g ` M ) A ) =/= A \/ ( A ( +g ` M ) B ) =/= B ) ) )
18 17 3adant3
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( E. y e. { A , B } ( A ( +g ` M ) y ) =/= y <-> ( ( A ( +g ` M ) A ) =/= A \/ ( A ( +g ` M ) B ) =/= B ) ) )
19 10 18 mpbird
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> E. y e. { A , B } ( A ( +g ` M ) y ) =/= y )
20 1 2 3 5 sgrp2nmndlem3
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) A ) = B )
21 necom
 |-  ( A =/= B <-> B =/= A )
22 df-ne
 |-  ( B =/= A <-> -. B = A )
23 21 22 sylbb
 |-  ( A =/= B -> -. B = A )
24 23 3ad2ant3
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> -. B = A )
25 24 adantr
 |-  ( ( ( A e. S /\ B e. S /\ A =/= B ) /\ ( B ( +g ` M ) A ) = B ) -> -. B = A )
26 eqeq1
 |-  ( ( B ( +g ` M ) A ) = B -> ( ( B ( +g ` M ) A ) = A <-> B = A ) )
27 26 adantl
 |-  ( ( ( A e. S /\ B e. S /\ A =/= B ) /\ ( B ( +g ` M ) A ) = B ) -> ( ( B ( +g ` M ) A ) = A <-> B = A ) )
28 25 27 mtbird
 |-  ( ( ( A e. S /\ B e. S /\ A =/= B ) /\ ( B ( +g ` M ) A ) = B ) -> -. ( B ( +g ` M ) A ) = A )
29 20 28 mpdan
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> -. ( B ( +g ` M ) A ) = A )
30 29 neqned
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) A ) =/= A )
31 30 orcd
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) A ) =/= A \/ ( B ( +g ` M ) B ) =/= B ) )
32 oveq2
 |-  ( y = A -> ( B ( +g ` M ) y ) = ( B ( +g ` M ) A ) )
33 32 12 neeq12d
 |-  ( y = A -> ( ( B ( +g ` M ) y ) =/= y <-> ( B ( +g ` M ) A ) =/= A ) )
34 oveq2
 |-  ( y = B -> ( B ( +g ` M ) y ) = ( B ( +g ` M ) B ) )
35 34 15 neeq12d
 |-  ( y = B -> ( ( B ( +g ` M ) y ) =/= y <-> ( B ( +g ` M ) B ) =/= B ) )
36 33 35 rexprg
 |-  ( ( A e. S /\ B e. S ) -> ( E. y e. { A , B } ( B ( +g ` M ) y ) =/= y <-> ( ( B ( +g ` M ) A ) =/= A \/ ( B ( +g ` M ) B ) =/= B ) ) )
37 36 3adant3
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( E. y e. { A , B } ( B ( +g ` M ) y ) =/= y <-> ( ( B ( +g ` M ) A ) =/= A \/ ( B ( +g ` M ) B ) =/= B ) ) )
38 31 37 mpbird
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> E. y e. { A , B } ( B ( +g ` M ) y ) =/= y )
39 oveq1
 |-  ( x = A -> ( x ( +g ` M ) y ) = ( A ( +g ` M ) y ) )
40 39 neeq1d
 |-  ( x = A -> ( ( x ( +g ` M ) y ) =/= y <-> ( A ( +g ` M ) y ) =/= y ) )
41 40 rexbidv
 |-  ( x = A -> ( E. y e. { A , B } ( x ( +g ` M ) y ) =/= y <-> E. y e. { A , B } ( A ( +g ` M ) y ) =/= y ) )
42 oveq1
 |-  ( x = B -> ( x ( +g ` M ) y ) = ( B ( +g ` M ) y ) )
43 42 neeq1d
 |-  ( x = B -> ( ( x ( +g ` M ) y ) =/= y <-> ( B ( +g ` M ) y ) =/= y ) )
44 43 rexbidv
 |-  ( x = B -> ( E. y e. { A , B } ( x ( +g ` M ) y ) =/= y <-> E. y e. { A , B } ( B ( +g ` M ) y ) =/= y ) )
45 41 44 ralprg
 |-  ( ( A e. S /\ B e. S ) -> ( A. x e. { A , B } E. y e. { A , B } ( x ( +g ` M ) y ) =/= y <-> ( E. y e. { A , B } ( A ( +g ` M ) y ) =/= y /\ E. y e. { A , B } ( B ( +g ` M ) y ) =/= y ) ) )
46 45 3adant3
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A. x e. { A , B } E. y e. { A , B } ( x ( +g ` M ) y ) =/= y <-> ( E. y e. { A , B } ( A ( +g ` M ) y ) =/= y /\ E. y e. { A , B } ( B ( +g ` M ) y ) =/= y ) ) )
47 19 38 46 mpbir2and
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> A. x e. { A , B } E. y e. { A , B } ( x ( +g ` M ) y ) =/= y )
48 2 1 eqtr2i
 |-  { A , B } = ( Base ` M )
49 48 5 isnmnd
 |-  ( A. x e. { A , B } E. y e. { A , B } ( x ( +g ` M ) y ) =/= y -> M e/ Mnd )
50 4 47 49 3syl
 |-  ( ( # ` S ) = 2 -> M e/ Mnd )