| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s |  |-  S = { A , B } | 
						
							| 2 |  | mgm2nsgrp.b |  |-  ( Base ` M ) = S | 
						
							| 3 |  | sgrp2nmnd.o |  |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) ) | 
						
							| 4 | 1 | hashprdifel |  |-  ( ( # ` S ) = 2 -> ( A e. S /\ B e. S /\ A =/= B ) ) | 
						
							| 5 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 6 | 1 2 3 5 | sgrp2nmndlem2 |  |-  ( ( A e. S /\ B e. S ) -> ( A ( +g ` M ) B ) = A ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) B ) = A ) | 
						
							| 8 |  | simp3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> A =/= B ) | 
						
							| 9 | 7 8 | eqnetrd |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) B ) =/= B ) | 
						
							| 10 | 9 | olcd |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) A ) =/= A \/ ( A ( +g ` M ) B ) =/= B ) ) | 
						
							| 11 |  | oveq2 |  |-  ( y = A -> ( A ( +g ` M ) y ) = ( A ( +g ` M ) A ) ) | 
						
							| 12 |  | id |  |-  ( y = A -> y = A ) | 
						
							| 13 | 11 12 | neeq12d |  |-  ( y = A -> ( ( A ( +g ` M ) y ) =/= y <-> ( A ( +g ` M ) A ) =/= A ) ) | 
						
							| 14 |  | oveq2 |  |-  ( y = B -> ( A ( +g ` M ) y ) = ( A ( +g ` M ) B ) ) | 
						
							| 15 |  | id |  |-  ( y = B -> y = B ) | 
						
							| 16 | 14 15 | neeq12d |  |-  ( y = B -> ( ( A ( +g ` M ) y ) =/= y <-> ( A ( +g ` M ) B ) =/= B ) ) | 
						
							| 17 | 13 16 | rexprg |  |-  ( ( A e. S /\ B e. S ) -> ( E. y e. { A , B } ( A ( +g ` M ) y ) =/= y <-> ( ( A ( +g ` M ) A ) =/= A \/ ( A ( +g ` M ) B ) =/= B ) ) ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( E. y e. { A , B } ( A ( +g ` M ) y ) =/= y <-> ( ( A ( +g ` M ) A ) =/= A \/ ( A ( +g ` M ) B ) =/= B ) ) ) | 
						
							| 19 | 10 18 | mpbird |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> E. y e. { A , B } ( A ( +g ` M ) y ) =/= y ) | 
						
							| 20 | 1 2 3 5 | sgrp2nmndlem3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) A ) = B ) | 
						
							| 21 |  | necom |  |-  ( A =/= B <-> B =/= A ) | 
						
							| 22 |  | df-ne |  |-  ( B =/= A <-> -. B = A ) | 
						
							| 23 | 21 22 | sylbb |  |-  ( A =/= B -> -. B = A ) | 
						
							| 24 | 23 | 3ad2ant3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> -. B = A ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( A e. S /\ B e. S /\ A =/= B ) /\ ( B ( +g ` M ) A ) = B ) -> -. B = A ) | 
						
							| 26 |  | eqeq1 |  |-  ( ( B ( +g ` M ) A ) = B -> ( ( B ( +g ` M ) A ) = A <-> B = A ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( A e. S /\ B e. S /\ A =/= B ) /\ ( B ( +g ` M ) A ) = B ) -> ( ( B ( +g ` M ) A ) = A <-> B = A ) ) | 
						
							| 28 | 25 27 | mtbird |  |-  ( ( ( A e. S /\ B e. S /\ A =/= B ) /\ ( B ( +g ` M ) A ) = B ) -> -. ( B ( +g ` M ) A ) = A ) | 
						
							| 29 | 20 28 | mpdan |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> -. ( B ( +g ` M ) A ) = A ) | 
						
							| 30 | 29 | neqned |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) A ) =/= A ) | 
						
							| 31 | 30 | orcd |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) A ) =/= A \/ ( B ( +g ` M ) B ) =/= B ) ) | 
						
							| 32 |  | oveq2 |  |-  ( y = A -> ( B ( +g ` M ) y ) = ( B ( +g ` M ) A ) ) | 
						
							| 33 | 32 12 | neeq12d |  |-  ( y = A -> ( ( B ( +g ` M ) y ) =/= y <-> ( B ( +g ` M ) A ) =/= A ) ) | 
						
							| 34 |  | oveq2 |  |-  ( y = B -> ( B ( +g ` M ) y ) = ( B ( +g ` M ) B ) ) | 
						
							| 35 | 34 15 | neeq12d |  |-  ( y = B -> ( ( B ( +g ` M ) y ) =/= y <-> ( B ( +g ` M ) B ) =/= B ) ) | 
						
							| 36 | 33 35 | rexprg |  |-  ( ( A e. S /\ B e. S ) -> ( E. y e. { A , B } ( B ( +g ` M ) y ) =/= y <-> ( ( B ( +g ` M ) A ) =/= A \/ ( B ( +g ` M ) B ) =/= B ) ) ) | 
						
							| 37 | 36 | 3adant3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( E. y e. { A , B } ( B ( +g ` M ) y ) =/= y <-> ( ( B ( +g ` M ) A ) =/= A \/ ( B ( +g ` M ) B ) =/= B ) ) ) | 
						
							| 38 | 31 37 | mpbird |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> E. y e. { A , B } ( B ( +g ` M ) y ) =/= y ) | 
						
							| 39 |  | oveq1 |  |-  ( x = A -> ( x ( +g ` M ) y ) = ( A ( +g ` M ) y ) ) | 
						
							| 40 | 39 | neeq1d |  |-  ( x = A -> ( ( x ( +g ` M ) y ) =/= y <-> ( A ( +g ` M ) y ) =/= y ) ) | 
						
							| 41 | 40 | rexbidv |  |-  ( x = A -> ( E. y e. { A , B } ( x ( +g ` M ) y ) =/= y <-> E. y e. { A , B } ( A ( +g ` M ) y ) =/= y ) ) | 
						
							| 42 |  | oveq1 |  |-  ( x = B -> ( x ( +g ` M ) y ) = ( B ( +g ` M ) y ) ) | 
						
							| 43 | 42 | neeq1d |  |-  ( x = B -> ( ( x ( +g ` M ) y ) =/= y <-> ( B ( +g ` M ) y ) =/= y ) ) | 
						
							| 44 | 43 | rexbidv |  |-  ( x = B -> ( E. y e. { A , B } ( x ( +g ` M ) y ) =/= y <-> E. y e. { A , B } ( B ( +g ` M ) y ) =/= y ) ) | 
						
							| 45 | 41 44 | ralprg |  |-  ( ( A e. S /\ B e. S ) -> ( A. x e. { A , B } E. y e. { A , B } ( x ( +g ` M ) y ) =/= y <-> ( E. y e. { A , B } ( A ( +g ` M ) y ) =/= y /\ E. y e. { A , B } ( B ( +g ` M ) y ) =/= y ) ) ) | 
						
							| 46 | 45 | 3adant3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A. x e. { A , B } E. y e. { A , B } ( x ( +g ` M ) y ) =/= y <-> ( E. y e. { A , B } ( A ( +g ` M ) y ) =/= y /\ E. y e. { A , B } ( B ( +g ` M ) y ) =/= y ) ) ) | 
						
							| 47 | 19 38 46 | mpbir2and |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> A. x e. { A , B } E. y e. { A , B } ( x ( +g ` M ) y ) =/= y ) | 
						
							| 48 | 2 1 | eqtr2i |  |-  { A , B } = ( Base ` M ) | 
						
							| 49 | 48 5 | isnmnd |  |-  ( A. x e. { A , B } E. y e. { A , B } ( x ( +g ` M ) y ) =/= y -> M e/ Mnd ) | 
						
							| 50 | 4 47 49 | 3syl |  |-  ( ( # ` S ) = 2 -> M e/ Mnd ) |