Step |
Hyp |
Ref |
Expression |
1 |
|
mgm2nsgrp.s |
|- S = { A , B } |
2 |
|
mgm2nsgrp.b |
|- ( Base ` M ) = S |
3 |
|
sgrp2nmnd.o |
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) ) |
4 |
1
|
hashprdifel |
|- ( ( # ` S ) = 2 -> ( A e. S /\ B e. S /\ A =/= B ) ) |
5 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
6 |
1 2 3 5
|
sgrp2nmndlem2 |
|- ( ( A e. S /\ B e. S ) -> ( A ( +g ` M ) B ) = A ) |
7 |
6
|
3adant3 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) B ) = A ) |
8 |
|
simp3 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> A =/= B ) |
9 |
7 8
|
eqnetrd |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) B ) =/= B ) |
10 |
9
|
olcd |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) A ) =/= A \/ ( A ( +g ` M ) B ) =/= B ) ) |
11 |
|
oveq2 |
|- ( y = A -> ( A ( +g ` M ) y ) = ( A ( +g ` M ) A ) ) |
12 |
|
id |
|- ( y = A -> y = A ) |
13 |
11 12
|
neeq12d |
|- ( y = A -> ( ( A ( +g ` M ) y ) =/= y <-> ( A ( +g ` M ) A ) =/= A ) ) |
14 |
|
oveq2 |
|- ( y = B -> ( A ( +g ` M ) y ) = ( A ( +g ` M ) B ) ) |
15 |
|
id |
|- ( y = B -> y = B ) |
16 |
14 15
|
neeq12d |
|- ( y = B -> ( ( A ( +g ` M ) y ) =/= y <-> ( A ( +g ` M ) B ) =/= B ) ) |
17 |
13 16
|
rexprg |
|- ( ( A e. S /\ B e. S ) -> ( E. y e. { A , B } ( A ( +g ` M ) y ) =/= y <-> ( ( A ( +g ` M ) A ) =/= A \/ ( A ( +g ` M ) B ) =/= B ) ) ) |
18 |
17
|
3adant3 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( E. y e. { A , B } ( A ( +g ` M ) y ) =/= y <-> ( ( A ( +g ` M ) A ) =/= A \/ ( A ( +g ` M ) B ) =/= B ) ) ) |
19 |
10 18
|
mpbird |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> E. y e. { A , B } ( A ( +g ` M ) y ) =/= y ) |
20 |
1 2 3 5
|
sgrp2nmndlem3 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) A ) = B ) |
21 |
|
necom |
|- ( A =/= B <-> B =/= A ) |
22 |
|
df-ne |
|- ( B =/= A <-> -. B = A ) |
23 |
21 22
|
sylbb |
|- ( A =/= B -> -. B = A ) |
24 |
23
|
3ad2ant3 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> -. B = A ) |
25 |
24
|
adantr |
|- ( ( ( A e. S /\ B e. S /\ A =/= B ) /\ ( B ( +g ` M ) A ) = B ) -> -. B = A ) |
26 |
|
eqeq1 |
|- ( ( B ( +g ` M ) A ) = B -> ( ( B ( +g ` M ) A ) = A <-> B = A ) ) |
27 |
26
|
adantl |
|- ( ( ( A e. S /\ B e. S /\ A =/= B ) /\ ( B ( +g ` M ) A ) = B ) -> ( ( B ( +g ` M ) A ) = A <-> B = A ) ) |
28 |
25 27
|
mtbird |
|- ( ( ( A e. S /\ B e. S /\ A =/= B ) /\ ( B ( +g ` M ) A ) = B ) -> -. ( B ( +g ` M ) A ) = A ) |
29 |
20 28
|
mpdan |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> -. ( B ( +g ` M ) A ) = A ) |
30 |
29
|
neqned |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) A ) =/= A ) |
31 |
30
|
orcd |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) A ) =/= A \/ ( B ( +g ` M ) B ) =/= B ) ) |
32 |
|
oveq2 |
|- ( y = A -> ( B ( +g ` M ) y ) = ( B ( +g ` M ) A ) ) |
33 |
32 12
|
neeq12d |
|- ( y = A -> ( ( B ( +g ` M ) y ) =/= y <-> ( B ( +g ` M ) A ) =/= A ) ) |
34 |
|
oveq2 |
|- ( y = B -> ( B ( +g ` M ) y ) = ( B ( +g ` M ) B ) ) |
35 |
34 15
|
neeq12d |
|- ( y = B -> ( ( B ( +g ` M ) y ) =/= y <-> ( B ( +g ` M ) B ) =/= B ) ) |
36 |
33 35
|
rexprg |
|- ( ( A e. S /\ B e. S ) -> ( E. y e. { A , B } ( B ( +g ` M ) y ) =/= y <-> ( ( B ( +g ` M ) A ) =/= A \/ ( B ( +g ` M ) B ) =/= B ) ) ) |
37 |
36
|
3adant3 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( E. y e. { A , B } ( B ( +g ` M ) y ) =/= y <-> ( ( B ( +g ` M ) A ) =/= A \/ ( B ( +g ` M ) B ) =/= B ) ) ) |
38 |
31 37
|
mpbird |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> E. y e. { A , B } ( B ( +g ` M ) y ) =/= y ) |
39 |
|
oveq1 |
|- ( x = A -> ( x ( +g ` M ) y ) = ( A ( +g ` M ) y ) ) |
40 |
39
|
neeq1d |
|- ( x = A -> ( ( x ( +g ` M ) y ) =/= y <-> ( A ( +g ` M ) y ) =/= y ) ) |
41 |
40
|
rexbidv |
|- ( x = A -> ( E. y e. { A , B } ( x ( +g ` M ) y ) =/= y <-> E. y e. { A , B } ( A ( +g ` M ) y ) =/= y ) ) |
42 |
|
oveq1 |
|- ( x = B -> ( x ( +g ` M ) y ) = ( B ( +g ` M ) y ) ) |
43 |
42
|
neeq1d |
|- ( x = B -> ( ( x ( +g ` M ) y ) =/= y <-> ( B ( +g ` M ) y ) =/= y ) ) |
44 |
43
|
rexbidv |
|- ( x = B -> ( E. y e. { A , B } ( x ( +g ` M ) y ) =/= y <-> E. y e. { A , B } ( B ( +g ` M ) y ) =/= y ) ) |
45 |
41 44
|
ralprg |
|- ( ( A e. S /\ B e. S ) -> ( A. x e. { A , B } E. y e. { A , B } ( x ( +g ` M ) y ) =/= y <-> ( E. y e. { A , B } ( A ( +g ` M ) y ) =/= y /\ E. y e. { A , B } ( B ( +g ` M ) y ) =/= y ) ) ) |
46 |
45
|
3adant3 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A. x e. { A , B } E. y e. { A , B } ( x ( +g ` M ) y ) =/= y <-> ( E. y e. { A , B } ( A ( +g ` M ) y ) =/= y /\ E. y e. { A , B } ( B ( +g ` M ) y ) =/= y ) ) ) |
47 |
19 38 46
|
mpbir2and |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> A. x e. { A , B } E. y e. { A , B } ( x ( +g ` M ) y ) =/= y ) |
48 |
2 1
|
eqtr2i |
|- { A , B } = ( Base ` M ) |
49 |
48 5
|
isnmnd |
|- ( A. x e. { A , B } E. y e. { A , B } ( x ( +g ` M ) y ) =/= y -> M e/ Mnd ) |
50 |
4 47 49
|
3syl |
|- ( ( # ` S ) = 2 -> M e/ Mnd ) |