| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s | ⊢ 𝑆  =  { 𝐴 ,  𝐵 } | 
						
							| 2 |  | mgm2nsgrp.b | ⊢ ( Base ‘ 𝑀 )  =  𝑆 | 
						
							| 3 |  | sgrp2nmnd.o | ⊢ ( +g ‘ 𝑀 )  =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 ) ) | 
						
							| 4 | 1 | hashprdifel | ⊢ ( ( ♯ ‘ 𝑆 )  =  2  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 ) ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 6 | 1 2 3 5 | sgrp2nmndlem2 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 )  =  𝐴 ) | 
						
							| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 )  =  𝐴 ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  𝐴  ≠  𝐵 ) | 
						
							| 9 | 7 8 | eqnetrd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 )  ≠  𝐵 ) | 
						
							| 10 | 9 | olcd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 )  ≠  𝐴  ∨  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 )  ≠  𝐵 ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 12 |  | id | ⊢ ( 𝑦  =  𝐴  →  𝑦  =  𝐴 ) | 
						
							| 13 | 11 12 | neeq12d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 )  ≠  𝐴 ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 15 |  | id | ⊢ ( 𝑦  =  𝐵  →  𝑦  =  𝐵 ) | 
						
							| 16 | 14 15 | neeq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 )  ≠  𝐵 ) ) | 
						
							| 17 | 13 16 | rexprg | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 )  ≠  𝐴  ∨  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 )  ≠  𝐵 ) ) ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 )  ≠  𝐴  ∨  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 )  ≠  𝐵 ) ) ) | 
						
							| 19 | 10 18 | mpbird | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦 ) | 
						
							| 20 | 1 2 3 5 | sgrp2nmndlem3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐵 ) | 
						
							| 21 |  | necom | ⊢ ( 𝐴  ≠  𝐵  ↔  𝐵  ≠  𝐴 ) | 
						
							| 22 |  | df-ne | ⊢ ( 𝐵  ≠  𝐴  ↔  ¬  𝐵  =  𝐴 ) | 
						
							| 23 | 21 22 | sylbb | ⊢ ( 𝐴  ≠  𝐵  →  ¬  𝐵  =  𝐴 ) | 
						
							| 24 | 23 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ¬  𝐵  =  𝐴 ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐵 )  →  ¬  𝐵  =  𝐴 ) | 
						
							| 26 |  | eqeq1 | ⊢ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐵  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐴  ↔  𝐵  =  𝐴 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐴  ↔  𝐵  =  𝐴 ) ) | 
						
							| 28 | 25 27 | mtbird | ⊢ ( ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐵 )  →  ¬  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐴 ) | 
						
							| 29 | 20 28 | mpdan | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ¬  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐴 ) | 
						
							| 30 | 29 | neqned | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  ≠  𝐴 ) | 
						
							| 31 | 30 | orcd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  ≠  𝐴  ∨  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 )  ≠  𝐵 ) ) | 
						
							| 32 |  | oveq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝐵 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 33 | 32 12 | neeq12d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  ≠  𝐴 ) ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐵 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 35 | 34 15 | neeq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 )  ≠  𝐵 ) ) | 
						
							| 36 | 33 35 | rexprg | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝐵 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  ≠  𝐴  ∨  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 )  ≠  𝐵 ) ) ) | 
						
							| 37 | 36 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝐵 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  ≠  𝐴  ∨  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 )  ≠  𝐵 ) ) ) | 
						
							| 38 | 31 37 | mpbird | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝐵 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦 ) | 
						
							| 39 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 40 | 39 | neeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦 ) ) | 
						
							| 41 | 40 | rexbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦 ) ) | 
						
							| 42 |  | oveq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 43 | 42 | neeq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ( 𝐵 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦 ) ) | 
						
							| 44 | 43 | rexbidv | ⊢ ( 𝑥  =  𝐵  →  ( ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝐵 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦 ) ) | 
						
							| 45 | 41 44 | ralprg | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ( ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ∧  ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝐵 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 46 | 45 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ↔  ( ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝐴 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  ∧  ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝐵 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦 ) ) ) | 
						
							| 47 | 19 38 46 | mpbir2and | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦 ) | 
						
							| 48 | 2 1 | eqtr2i | ⊢ { 𝐴 ,  𝐵 }  =  ( Base ‘ 𝑀 ) | 
						
							| 49 | 48 5 | isnmnd | ⊢ ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ∃ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ≠  𝑦  →  𝑀  ∉  Mnd ) | 
						
							| 50 | 4 47 49 | 3syl | ⊢ ( ( ♯ ‘ 𝑆 )  =  2  →  𝑀  ∉  Mnd ) |