Metamath Proof Explorer


Theorem sgrp2nmndlem2

Description: Lemma 2 for sgrp2nmnd . (Contributed by AV, 29-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s 𝑆 = { 𝐴 , 𝐵 }
mgm2nsgrp.b ( Base ‘ 𝑀 ) = 𝑆
sgrp2nmnd.o ( +g𝑀 ) = ( 𝑥𝑆 , 𝑦𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) )
sgrp2nmnd.p = ( +g𝑀 )
Assertion sgrp2nmndlem2 ( ( 𝐴𝑆𝐶𝑆 ) → ( 𝐴 𝐶 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s 𝑆 = { 𝐴 , 𝐵 }
2 mgm2nsgrp.b ( Base ‘ 𝑀 ) = 𝑆
3 sgrp2nmnd.o ( +g𝑀 ) = ( 𝑥𝑆 , 𝑦𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) )
4 sgrp2nmnd.p = ( +g𝑀 )
5 4 3 eqtri = ( 𝑥𝑆 , 𝑦𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) )
6 5 a1i ( ( 𝐴𝑆𝐶𝑆 ) → = ( 𝑥𝑆 , 𝑦𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) ) )
7 iftrue ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) = 𝐴 )
8 7 ad2antrl ( ( ( 𝐴𝑆𝐶𝑆 ) ∧ ( 𝑥 = 𝐴𝑦 = 𝐶 ) ) → if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) = 𝐴 )
9 simpl ( ( 𝐴𝑆𝐶𝑆 ) → 𝐴𝑆 )
10 simpr ( ( 𝐴𝑆𝐶𝑆 ) → 𝐶𝑆 )
11 6 8 9 10 9 ovmpod ( ( 𝐴𝑆𝐶𝑆 ) → ( 𝐴 𝐶 ) = 𝐴 )