| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s | ⊢ 𝑆  =  { 𝐴 ,  𝐵 } | 
						
							| 2 |  | mgm2nsgrp.b | ⊢ ( Base ‘ 𝑀 )  =  𝑆 | 
						
							| 3 |  | sgrp2nmnd.o | ⊢ ( +g ‘ 𝑀 )  =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 ) ) | 
						
							| 4 |  | sgrp2nmnd.p | ⊢  ⚬   =  ( +g ‘ 𝑀 ) | 
						
							| 5 | 4 3 | eqtri | ⊢  ⚬   =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 ) ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →   ⚬   =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 ) ) ) | 
						
							| 7 |  | iftrue | ⊢ ( 𝑥  =  𝐴  →  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 )  =  𝐴 ) | 
						
							| 8 | 7 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐶 ) )  →  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 )  =  𝐴 ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →  𝐴  ∈  𝑆 ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →  𝐶  ∈  𝑆 ) | 
						
							| 11 | 6 8 9 10 9 | ovmpod | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →  ( 𝐴  ⚬  𝐶 )  =  𝐴 ) |