Step |
Hyp |
Ref |
Expression |
1 |
|
mgm2nsgrp.s |
⊢ 𝑆 = { 𝐴 , 𝐵 } |
2 |
|
mgm2nsgrp.b |
⊢ ( Base ‘ 𝑀 ) = 𝑆 |
3 |
|
sgrp2nmnd.o |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) ) |
4 |
|
sgrp2nmnd.p |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
5 |
4 3
|
eqtri |
⊢ ⚬ = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) ) |
6 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ⚬ = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) ) ) |
7 |
|
iftrue |
⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) = 𝐴 ) |
8 |
7
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐶 ) ) → if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) = 𝐴 ) |
9 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
10 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → 𝐶 ∈ 𝑆 ) |
11 |
6 8 9 10 9
|
ovmpod |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 ⚬ 𝐶 ) = 𝐴 ) |