| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s | ⊢ 𝑆  =  { 𝐴 ,  𝐵 } | 
						
							| 2 |  | mgm2nsgrp.b | ⊢ ( Base ‘ 𝑀 )  =  𝑆 | 
						
							| 3 |  | sgrp2nmnd.o | ⊢ ( +g ‘ 𝑀 )  =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 ) ) | 
						
							| 4 |  | sgrp2nmnd.p | ⊢  ⚬   =  ( +g ‘ 𝑀 ) | 
						
							| 5 | 4 3 | eqtri | ⊢  ⚬   =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 ) ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →   ⚬   =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 ) ) ) | 
						
							| 7 |  | df-ne | ⊢ ( 𝐴  ≠  𝐵  ↔  ¬  𝐴  =  𝐵 ) | 
						
							| 8 |  | eqeq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  =  𝑥  ↔  𝐴  =  𝐵 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  𝐶 )  →  ( 𝐴  =  𝑥  ↔  𝐴  =  𝐵 ) ) | 
						
							| 10 |  | eqcom | ⊢ ( 𝐴  =  𝑥  ↔  𝑥  =  𝐴 ) | 
						
							| 11 | 9 10 | bitr3di | ⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  𝐶 )  →  ( 𝐴  =  𝐵  ↔  𝑥  =  𝐴 ) ) | 
						
							| 12 | 11 | notbid | ⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  𝐶 )  →  ( ¬  𝐴  =  𝐵  ↔  ¬  𝑥  =  𝐴 ) ) | 
						
							| 13 | 12 | biimpcd | ⊢ ( ¬  𝐴  =  𝐵  →  ( ( 𝑥  =  𝐵  ∧  𝑦  =  𝐶 )  →  ¬  𝑥  =  𝐴 ) ) | 
						
							| 14 | 7 13 | sylbi | ⊢ ( 𝐴  ≠  𝐵  →  ( ( 𝑥  =  𝐵  ∧  𝑦  =  𝐶 )  →  ¬  𝑥  =  𝐴 ) ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝑥  =  𝐵  ∧  𝑦  =  𝐶 )  →  ¬  𝑥  =  𝐴 ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑥  =  𝐵  ∧  𝑦  =  𝐶 ) )  →  ¬  𝑥  =  𝐴 ) | 
						
							| 17 | 16 | iffalsed | ⊢ ( ( ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑥  =  𝐵  ∧  𝑦  =  𝐶 ) )  →  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 )  =  𝐵 ) | 
						
							| 18 |  | simp2 | ⊢ ( ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  𝑆 ) | 
						
							| 19 |  | simp1 | ⊢ ( ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  𝐶  ∈  𝑆 ) | 
						
							| 20 | 6 17 18 19 18 | ovmpod | ⊢ ( ( 𝐶  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐵  ⚬  𝐶 )  =  𝐵 ) |