Step |
Hyp |
Ref |
Expression |
1 |
|
mgm2nsgrp.s |
⊢ 𝑆 = { 𝐴 , 𝐵 } |
2 |
|
mgm2nsgrp.b |
⊢ ( Base ‘ 𝑀 ) = 𝑆 |
3 |
|
sgrp2nmnd.o |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) ) |
4 |
|
sgrp2nmnd.p |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
5 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
6 |
5 1
|
eleqtrrdi |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑆 ) |
7 |
|
prid2g |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
8 |
7 1
|
eleqtrrdi |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑆 ) |
9 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
10 |
1 2 3 4
|
sgrp2nmndlem2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐴 ⚬ 𝐴 ) = 𝐴 ) |
11 |
9 10
|
syldan |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ⚬ 𝐴 ) = 𝐴 ) |
12 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⚬ 𝐴 ) = ( 𝐵 ⚬ 𝐴 ) ) |
13 |
|
id |
⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ↔ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ) |
15 |
11 14
|
syl5ib |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ) |
16 |
|
simprl |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐴 ∈ 𝑆 ) |
17 |
|
simprr |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐵 ∈ 𝑆 ) |
18 |
|
neqne |
⊢ ( ¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵 ) |
19 |
18
|
adantr |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐴 ≠ 𝐵 ) |
20 |
1 2 3 4
|
sgrp2nmndlem3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) |
21 |
16 17 19 20
|
syl3anc |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) |
22 |
21
|
ex |
⊢ ( ¬ 𝐴 = 𝐵 → ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ) |
23 |
15 22
|
pm2.61i |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) |
24 |
1 2 3 4
|
sgrp2nmndlem2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ⚬ 𝐵 ) = 𝐴 ) |
25 |
13 13
|
oveq12d |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⚬ 𝐴 ) = ( 𝐵 ⚬ 𝐵 ) ) |
26 |
25 13
|
eqeq12d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ↔ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) |
27 |
11 26
|
syl5ib |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) |
28 |
1 2 3 4
|
sgrp2nmndlem3 |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) |
29 |
17 17 19 28
|
syl3anc |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) |
30 |
29
|
ex |
⊢ ( ¬ 𝐴 = 𝐵 → ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) |
31 |
27 30
|
pm2.61i |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) |
32 |
24 31
|
jca |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) |
33 |
11 23 32
|
jca31 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ∧ ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) ) |
34 |
6 8 33
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ∧ ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) ) |
35 |
1
|
raleqi |
⊢ ( ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ( 𝑦 ⚬ 𝑥 ) = 𝑦 ) |
36 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⚬ 𝑥 ) = ( 𝐴 ⚬ 𝑥 ) ) |
37 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
38 |
36 37
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ( 𝐴 ⚬ 𝑥 ) = 𝐴 ) ) |
39 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ⚬ 𝑥 ) = ( 𝐵 ⚬ 𝑥 ) ) |
40 |
|
id |
⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) |
41 |
39 40
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ) |
42 |
38 41
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ) ) |
43 |
35 42
|
syl5bb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ) ) |
44 |
43
|
ralbidv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ∀ 𝑥 ∈ 𝑆 ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ) ) |
45 |
1
|
raleqi |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ) |
46 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ⚬ 𝑥 ) = ( 𝐴 ⚬ 𝐴 ) ) |
47 |
46
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ↔ ( 𝐴 ⚬ 𝐴 ) = 𝐴 ) ) |
48 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ⚬ 𝑥 ) = ( 𝐵 ⚬ 𝐴 ) ) |
49 |
48
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ⚬ 𝑥 ) = 𝐵 ↔ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ) |
50 |
47 49
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ↔ ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ) ) |
51 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ⚬ 𝑥 ) = ( 𝐴 ⚬ 𝐵 ) ) |
52 |
51
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ↔ ( 𝐴 ⚬ 𝐵 ) = 𝐴 ) ) |
53 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐵 ⚬ 𝑥 ) = ( 𝐵 ⚬ 𝐵 ) ) |
54 |
53
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐵 ⚬ 𝑥 ) = 𝐵 ↔ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) |
55 |
52 54
|
anbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ↔ ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) ) |
56 |
50 55
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ↔ ( ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ∧ ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) ) ) |
57 |
45 56
|
syl5bb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑆 ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ↔ ( ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ∧ ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) ) ) |
58 |
44 57
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ( ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ∧ ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) ) ) |
59 |
34 58
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ) |