| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgm2nsgrp.s |
⊢ 𝑆 = { 𝐴 , 𝐵 } |
| 2 |
|
mgm2nsgrp.b |
⊢ ( Base ‘ 𝑀 ) = 𝑆 |
| 3 |
|
sgrp2nmnd.o |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) ) |
| 4 |
|
sgrp2nmnd.p |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
| 5 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 6 |
5 1
|
eleqtrrdi |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑆 ) |
| 7 |
|
prid2g |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 8 |
7 1
|
eleqtrrdi |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑆 ) |
| 9 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
| 10 |
1 2 3 4
|
sgrp2nmndlem2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐴 ⚬ 𝐴 ) = 𝐴 ) |
| 11 |
9 10
|
syldan |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ⚬ 𝐴 ) = 𝐴 ) |
| 12 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⚬ 𝐴 ) = ( 𝐵 ⚬ 𝐴 ) ) |
| 13 |
|
id |
⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) |
| 14 |
12 13
|
eqeq12d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ↔ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ) |
| 15 |
11 14
|
imbitrid |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ) |
| 16 |
|
simprl |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐴 ∈ 𝑆 ) |
| 17 |
|
simprr |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐵 ∈ 𝑆 ) |
| 18 |
|
neqne |
⊢ ( ¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵 ) |
| 19 |
18
|
adantr |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → 𝐴 ≠ 𝐵 ) |
| 20 |
1 2 3 4
|
sgrp2nmndlem3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) |
| 21 |
16 17 19 20
|
syl3anc |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) |
| 22 |
21
|
ex |
⊢ ( ¬ 𝐴 = 𝐵 → ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ) |
| 23 |
15 22
|
pm2.61i |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) |
| 24 |
1 2 3 4
|
sgrp2nmndlem2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ⚬ 𝐵 ) = 𝐴 ) |
| 25 |
13 13
|
oveq12d |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⚬ 𝐴 ) = ( 𝐵 ⚬ 𝐵 ) ) |
| 26 |
25 13
|
eqeq12d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ↔ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) |
| 27 |
11 26
|
imbitrid |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) |
| 28 |
1 2 3 4
|
sgrp2nmndlem3 |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) |
| 29 |
17 17 19 28
|
syl3anc |
⊢ ( ( ¬ 𝐴 = 𝐵 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) |
| 30 |
29
|
ex |
⊢ ( ¬ 𝐴 = 𝐵 → ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) |
| 31 |
27 30
|
pm2.61i |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) |
| 32 |
24 31
|
jca |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) |
| 33 |
11 23 32
|
jca31 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ∧ ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) ) |
| 34 |
6 8 33
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ∧ ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) ) |
| 35 |
1
|
raleqi |
⊢ ( ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ( 𝑦 ⚬ 𝑥 ) = 𝑦 ) |
| 36 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⚬ 𝑥 ) = ( 𝐴 ⚬ 𝑥 ) ) |
| 37 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
| 38 |
36 37
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ( 𝐴 ⚬ 𝑥 ) = 𝐴 ) ) |
| 39 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ⚬ 𝑥 ) = ( 𝐵 ⚬ 𝑥 ) ) |
| 40 |
|
id |
⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) |
| 41 |
39 40
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ) |
| 42 |
38 41
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ) ) |
| 43 |
35 42
|
bitrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ) ) |
| 44 |
43
|
ralbidv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ∀ 𝑥 ∈ 𝑆 ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ) ) |
| 45 |
1
|
raleqi |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ) |
| 46 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ⚬ 𝑥 ) = ( 𝐴 ⚬ 𝐴 ) ) |
| 47 |
46
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ↔ ( 𝐴 ⚬ 𝐴 ) = 𝐴 ) ) |
| 48 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 ⚬ 𝑥 ) = ( 𝐵 ⚬ 𝐴 ) ) |
| 49 |
48
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ⚬ 𝑥 ) = 𝐵 ↔ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ) |
| 50 |
47 49
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ↔ ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ) ) |
| 51 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ⚬ 𝑥 ) = ( 𝐴 ⚬ 𝐵 ) ) |
| 52 |
51
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ↔ ( 𝐴 ⚬ 𝐵 ) = 𝐴 ) ) |
| 53 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐵 ⚬ 𝑥 ) = ( 𝐵 ⚬ 𝐵 ) ) |
| 54 |
53
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐵 ⚬ 𝑥 ) = 𝐵 ↔ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) |
| 55 |
52 54
|
anbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ↔ ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) ) |
| 56 |
50 55
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ↔ ( ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ∧ ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) ) ) |
| 57 |
45 56
|
bitrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑆 ( ( 𝐴 ⚬ 𝑥 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝑥 ) = 𝐵 ) ↔ ( ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ∧ ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) ) ) |
| 58 |
44 57
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ( ( ( 𝐴 ⚬ 𝐴 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐴 ) = 𝐵 ) ∧ ( ( 𝐴 ⚬ 𝐵 ) = 𝐴 ∧ ( 𝐵 ⚬ 𝐵 ) = 𝐵 ) ) ) ) |
| 59 |
34 58
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ) |