| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s | ⊢ 𝑆  =  { 𝐴 ,  𝐵 } | 
						
							| 2 |  | mgm2nsgrp.b | ⊢ ( Base ‘ 𝑀 )  =  𝑆 | 
						
							| 3 |  | sgrp2nmnd.o | ⊢ ( +g ‘ 𝑀 )  =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 ) ) | 
						
							| 4 |  | sgrp2nmnd.p | ⊢  ⚬   =  ( +g ‘ 𝑀 ) | 
						
							| 5 |  | prid1g | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  { 𝐴 ,  𝐵 } ) | 
						
							| 6 | 5 1 | eleqtrrdi | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  𝑆 ) | 
						
							| 7 |  | prid2g | ⊢ ( 𝐵  ∈  𝑊  →  𝐵  ∈  { 𝐴 ,  𝐵 } ) | 
						
							| 8 | 7 1 | eleqtrrdi | ⊢ ( 𝐵  ∈  𝑊  →  𝐵  ∈  𝑆 ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  𝐴  ∈  𝑆 ) | 
						
							| 10 | 1 2 3 4 | sgrp2nmndlem2 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐴  ∈  𝑆 )  →  ( 𝐴  ⚬  𝐴 )  =  𝐴 ) | 
						
							| 11 | 9 10 | syldan | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴  ⚬  𝐴 )  =  𝐴 ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ⚬  𝐴 )  =  ( 𝐵  ⚬  𝐴 ) ) | 
						
							| 13 |  | id | ⊢ ( 𝐴  =  𝐵  →  𝐴  =  𝐵 ) | 
						
							| 14 | 12 13 | eqeq12d | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝐴  ⚬  𝐴 )  =  𝐴  ↔  ( 𝐵  ⚬  𝐴 )  =  𝐵 ) ) | 
						
							| 15 | 11 14 | imbitrid | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐵  ⚬  𝐴 )  =  𝐵 ) ) | 
						
							| 16 |  | simprl | ⊢ ( ( ¬  𝐴  =  𝐵  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  →  𝐴  ∈  𝑆 ) | 
						
							| 17 |  | simprr | ⊢ ( ( ¬  𝐴  =  𝐵  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  →  𝐵  ∈  𝑆 ) | 
						
							| 18 |  | neqne | ⊢ ( ¬  𝐴  =  𝐵  →  𝐴  ≠  𝐵 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ¬  𝐴  =  𝐵  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 20 | 1 2 3 4 | sgrp2nmndlem3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐵  ⚬  𝐴 )  =  𝐵 ) | 
						
							| 21 | 16 17 19 20 | syl3anc | ⊢ ( ( ¬  𝐴  =  𝐵  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  →  ( 𝐵  ⚬  𝐴 )  =  𝐵 ) | 
						
							| 22 | 21 | ex | ⊢ ( ¬  𝐴  =  𝐵  →  ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐵  ⚬  𝐴 )  =  𝐵 ) ) | 
						
							| 23 | 15 22 | pm2.61i | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐵  ⚬  𝐴 )  =  𝐵 ) | 
						
							| 24 | 1 2 3 4 | sgrp2nmndlem2 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴  ⚬  𝐵 )  =  𝐴 ) | 
						
							| 25 | 13 13 | oveq12d | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ⚬  𝐴 )  =  ( 𝐵  ⚬  𝐵 ) ) | 
						
							| 26 | 25 13 | eqeq12d | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝐴  ⚬  𝐴 )  =  𝐴  ↔  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) ) | 
						
							| 27 | 11 26 | imbitrid | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) ) | 
						
							| 28 | 1 2 3 4 | sgrp2nmndlem3 | ⊢ ( ( 𝐵  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) | 
						
							| 29 | 17 17 19 28 | syl3anc | ⊢ ( ( ¬  𝐴  =  𝐵  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) )  →  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) | 
						
							| 30 | 29 | ex | ⊢ ( ¬  𝐴  =  𝐵  →  ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) ) | 
						
							| 31 | 27 30 | pm2.61i | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) | 
						
							| 32 | 24 31 | jca | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( 𝐴  ⚬  𝐵 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) ) | 
						
							| 33 | 11 23 32 | jca31 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( ( 𝐴  ⚬  𝐴 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐴 )  =  𝐵 )  ∧  ( ( 𝐴  ⚬  𝐵 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) ) ) | 
						
							| 34 | 6 8 33 | syl2an | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ( ( 𝐴  ⚬  𝐴 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐴 )  =  𝐵 )  ∧  ( ( 𝐴  ⚬  𝐵 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) ) ) | 
						
							| 35 | 1 | raleqi | ⊢ ( ∀ 𝑦  ∈  𝑆 ( 𝑦  ⚬  𝑥 )  =  𝑦  ↔  ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝑦  ⚬  𝑥 )  =  𝑦 ) | 
						
							| 36 |  | oveq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  ⚬  𝑥 )  =  ( 𝐴  ⚬  𝑥 ) ) | 
						
							| 37 |  | id | ⊢ ( 𝑦  =  𝐴  →  𝑦  =  𝐴 ) | 
						
							| 38 | 36 37 | eqeq12d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑦  ⚬  𝑥 )  =  𝑦  ↔  ( 𝐴  ⚬  𝑥 )  =  𝐴 ) ) | 
						
							| 39 |  | oveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ⚬  𝑥 )  =  ( 𝐵  ⚬  𝑥 ) ) | 
						
							| 40 |  | id | ⊢ ( 𝑦  =  𝐵  →  𝑦  =  𝐵 ) | 
						
							| 41 | 39 40 | eqeq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑦  ⚬  𝑥 )  =  𝑦  ↔  ( 𝐵  ⚬  𝑥 )  =  𝐵 ) ) | 
						
							| 42 | 38 41 | ralprg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } ( 𝑦  ⚬  𝑥 )  =  𝑦  ↔  ( ( 𝐴  ⚬  𝑥 )  =  𝐴  ∧  ( 𝐵  ⚬  𝑥 )  =  𝐵 ) ) ) | 
						
							| 43 | 35 42 | bitrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑦  ∈  𝑆 ( 𝑦  ⚬  𝑥 )  =  𝑦  ↔  ( ( 𝐴  ⚬  𝑥 )  =  𝐴  ∧  ( 𝐵  ⚬  𝑥 )  =  𝐵 ) ) ) | 
						
							| 44 | 43 | ralbidv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑦  ⚬  𝑥 )  =  𝑦  ↔  ∀ 𝑥  ∈  𝑆 ( ( 𝐴  ⚬  𝑥 )  =  𝐴  ∧  ( 𝐵  ⚬  𝑥 )  =  𝐵 ) ) ) | 
						
							| 45 | 1 | raleqi | ⊢ ( ∀ 𝑥  ∈  𝑆 ( ( 𝐴  ⚬  𝑥 )  =  𝐴  ∧  ( 𝐵  ⚬  𝑥 )  =  𝐵 )  ↔  ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴  ⚬  𝑥 )  =  𝐴  ∧  ( 𝐵  ⚬  𝑥 )  =  𝐵 ) ) | 
						
							| 46 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐴  ⚬  𝑥 )  =  ( 𝐴  ⚬  𝐴 ) ) | 
						
							| 47 | 46 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝐴  ⚬  𝑥 )  =  𝐴  ↔  ( 𝐴  ⚬  𝐴 )  =  𝐴 ) ) | 
						
							| 48 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐵  ⚬  𝑥 )  =  ( 𝐵  ⚬  𝐴 ) ) | 
						
							| 49 | 48 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝐵  ⚬  𝑥 )  =  𝐵  ↔  ( 𝐵  ⚬  𝐴 )  =  𝐵 ) ) | 
						
							| 50 | 47 49 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝐴  ⚬  𝑥 )  =  𝐴  ∧  ( 𝐵  ⚬  𝑥 )  =  𝐵 )  ↔  ( ( 𝐴  ⚬  𝐴 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐴 )  =  𝐵 ) ) ) | 
						
							| 51 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ⚬  𝑥 )  =  ( 𝐴  ⚬  𝐵 ) ) | 
						
							| 52 | 51 | eqeq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐴  ⚬  𝑥 )  =  𝐴  ↔  ( 𝐴  ⚬  𝐵 )  =  𝐴 ) ) | 
						
							| 53 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐵  ⚬  𝑥 )  =  ( 𝐵  ⚬  𝐵 ) ) | 
						
							| 54 | 53 | eqeq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐵  ⚬  𝑥 )  =  𝐵  ↔  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) ) | 
						
							| 55 | 52 54 | anbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( ( 𝐴  ⚬  𝑥 )  =  𝐴  ∧  ( 𝐵  ⚬  𝑥 )  =  𝐵 )  ↔  ( ( 𝐴  ⚬  𝐵 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) ) ) | 
						
							| 56 | 50 55 | ralprg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴  ⚬  𝑥 )  =  𝐴  ∧  ( 𝐵  ⚬  𝑥 )  =  𝐵 )  ↔  ( ( ( 𝐴  ⚬  𝐴 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐴 )  =  𝐵 )  ∧  ( ( 𝐴  ⚬  𝐵 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) ) ) ) | 
						
							| 57 | 45 56 | bitrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑥  ∈  𝑆 ( ( 𝐴  ⚬  𝑥 )  =  𝐴  ∧  ( 𝐵  ⚬  𝑥 )  =  𝐵 )  ↔  ( ( ( 𝐴  ⚬  𝐴 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐴 )  =  𝐵 )  ∧  ( ( 𝐴  ⚬  𝐵 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) ) ) ) | 
						
							| 58 | 44 57 | bitrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑦  ⚬  𝑥 )  =  𝑦  ↔  ( ( ( 𝐴  ⚬  𝐴 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐴 )  =  𝐵 )  ∧  ( ( 𝐴  ⚬  𝐵 )  =  𝐴  ∧  ( 𝐵  ⚬  𝐵 )  =  𝐵 ) ) ) ) | 
						
							| 59 | 34 58 | mpbird | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑦  ⚬  𝑥 )  =  𝑦 ) |