Step |
Hyp |
Ref |
Expression |
1 |
|
mgm2nsgrp.s |
⊢ 𝑆 = { 𝐴 , 𝐵 } |
2 |
|
mgm2nsgrp.b |
⊢ ( Base ‘ 𝑀 ) = 𝑆 |
3 |
|
sgrp2nmnd.o |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) ) |
4 |
|
sgrp2nmnd.p |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
5 |
1
|
hashprdifel |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) ) |
6 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑆 ) |
7 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑆 ) |
8 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐴 ≠ 𝐵 ) |
9 |
8
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑦 ∈ 𝑆 𝐴 ≠ 𝐵 ) |
10 |
1 2 3 4
|
sgrp2rid2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 ⚬ 𝑥 ) = ( 𝑦 ⚬ 𝐴 ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ( 𝑦 ⚬ 𝐴 ) = 𝑦 ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝐴 ) = 𝑦 ) ) |
14 |
13
|
rspcv |
⊢ ( 𝐴 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 → ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝐴 ) = 𝑦 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 → ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝐴 ) = 𝑦 ) ) |
16 |
10 15
|
mpd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝐴 ) = 𝑦 ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝐴 ) = 𝑦 ) |
18 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑦 ⚬ 𝑥 ) = ( 𝑦 ⚬ 𝐵 ) ) |
19 |
18
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑥 = 𝐵 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) ) |
21 |
20
|
rspcv |
⊢ ( 𝐵 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 → ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝑥 ) = 𝑦 → ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) ) |
23 |
10 22
|
mpd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) |
24 |
23
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) |
25 |
|
r19.26-3 |
⊢ ( ∀ 𝑦 ∈ 𝑆 ( 𝐴 ≠ 𝐵 ∧ ( 𝑦 ⚬ 𝐴 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝐴 ≠ 𝐵 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝐴 ) = 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) ) |
26 |
9 17 24 25
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑦 ∈ 𝑆 ( 𝐴 ≠ 𝐵 ∧ ( 𝑦 ⚬ 𝐴 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) ) |
27 |
6 7 26
|
3jca |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝐴 ≠ 𝐵 ∧ ( 𝑦 ⚬ 𝐴 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) ) ) |
28 |
|
neeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≠ 𝑧 ↔ 𝐴 ≠ 𝑧 ) ) |
29 |
|
biidd |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 ⚬ 𝑧 ) = 𝑦 ↔ ( 𝑦 ⚬ 𝑧 ) = 𝑦 ) ) |
30 |
28 12 29
|
3anbi123d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ≠ 𝑧 ∧ ( 𝑦 ⚬ 𝑥 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝑧 ) = 𝑦 ) ↔ ( 𝐴 ≠ 𝑧 ∧ ( 𝑦 ⚬ 𝐴 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝑧 ) = 𝑦 ) ) ) |
31 |
30
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ≠ 𝑧 ∧ ( 𝑦 ⚬ 𝑥 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝑧 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝐴 ≠ 𝑧 ∧ ( 𝑦 ⚬ 𝐴 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝑧 ) = 𝑦 ) ) ) |
32 |
|
neeq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 ≠ 𝑧 ↔ 𝐴 ≠ 𝐵 ) ) |
33 |
|
biidd |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑦 ⚬ 𝐴 ) = 𝑦 ↔ ( 𝑦 ⚬ 𝐴 ) = 𝑦 ) ) |
34 |
|
oveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝑦 ⚬ 𝑧 ) = ( 𝑦 ⚬ 𝐵 ) ) |
35 |
34
|
eqeq1d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑦 ⚬ 𝑧 ) = 𝑦 ↔ ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) ) |
36 |
32 33 35
|
3anbi123d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ≠ 𝑧 ∧ ( 𝑦 ⚬ 𝐴 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝑧 ) = 𝑦 ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑦 ⚬ 𝐴 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) ) ) |
37 |
36
|
ralbidv |
⊢ ( 𝑧 = 𝐵 → ( ∀ 𝑦 ∈ 𝑆 ( 𝐴 ≠ 𝑧 ∧ ( 𝑦 ⚬ 𝐴 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝑧 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝐴 ≠ 𝐵 ∧ ( 𝑦 ⚬ 𝐴 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) ) ) |
38 |
31 37
|
rspc2ev |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝐴 ≠ 𝐵 ∧ ( 𝑦 ⚬ 𝐴 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝐵 ) = 𝑦 ) ) → ∃ 𝑥 ∈ 𝑆 ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ≠ 𝑧 ∧ ( 𝑦 ⚬ 𝑥 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝑧 ) = 𝑦 ) ) |
39 |
5 27 38
|
3syl |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 → ∃ 𝑥 ∈ 𝑆 ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ≠ 𝑧 ∧ ( 𝑦 ⚬ 𝑥 ) = 𝑦 ∧ ( 𝑦 ⚬ 𝑧 ) = 𝑦 ) ) |