Step |
Hyp |
Ref |
Expression |
1 |
|
mgm2nsgrp.s |
⊢ 𝑆 = { 𝐴 , 𝐵 } |
2 |
|
mgm2nsgrp.b |
⊢ ( Base ‘ 𝑀 ) = 𝑆 |
3 |
|
sgrp2nmnd.o |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) ) |
4 |
1
|
hashprdifel |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) ) |
5 |
|
3simpa |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
6 |
1 2 3
|
sgrp2nmndlem1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝑀 ∈ Mgm ) |
7 |
4 5 6
|
3syl |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 → 𝑀 ∈ Mgm ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
9 |
1 2 3 8
|
sgrp2nmndlem2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) = 𝐴 ) |
10 |
9
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) |
11 |
9
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) |
12 |
10 11
|
eqtr4d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
13 |
12
|
anidms |
⊢ ( 𝐴 ∈ 𝑆 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
15 |
9
|
anidms |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) = 𝐴 ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) = 𝐴 ) |
17 |
16
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) |
18 |
1 2 3 8
|
sgrp2nmndlem2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) = 𝐴 ) |
19 |
18
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) |
20 |
16 19 18
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
21 |
17 20
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
22 |
21
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
23 |
14 22
|
jca |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) |
24 |
18
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) = 𝐴 ) |
25 |
1 2 3 8
|
sgrp2nmndlem3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) = 𝐵 ) |
26 |
25
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) |
27 |
24
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) |
28 |
15
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) = 𝐴 ) |
29 |
27 28
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = 𝐴 ) |
30 |
24 26 29
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
31 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑆 ) |
32 |
1 2 3 8
|
sgrp2nmndlem3 |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) = 𝐵 ) |
33 |
31 32
|
syld3an1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) = 𝐵 ) |
34 |
33
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) |
35 |
18
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) |
36 |
35 18
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = 𝐴 ) |
37 |
36
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = 𝐴 ) |
38 |
24 34 37
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
39 |
23 30 38
|
jca32 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) |
40 |
25
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) |
41 |
28
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) |
42 |
40 41
|
eqtr4d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
43 |
24
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) |
44 |
25
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) |
45 |
44 33
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = 𝐵 ) |
46 |
25 43 45
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
47 |
42 46
|
jca |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) |
48 |
25
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) |
49 |
33
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) |
50 |
49 25
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = 𝐵 ) |
51 |
33 48 50
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
52 |
32
|
oveq1d |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) |
53 |
32
|
oveq2d |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) |
54 |
52 53
|
eqtr4d |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
55 |
31 54
|
syld3an1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
56 |
47 51 55
|
jca32 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) |
57 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ) |
58 |
57
|
oveq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
59 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
60 |
58 59
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
61 |
60
|
2ralbidv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
62 |
|
oveq1 |
⊢ ( 𝑎 = 𝐵 → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ) |
63 |
62
|
oveq1d |
⊢ ( 𝑎 = 𝐵 → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
64 |
|
oveq1 |
⊢ ( 𝑎 = 𝐵 → ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
65 |
63 64
|
eqeq12d |
⊢ ( 𝑎 = 𝐵 → ( ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
66 |
65
|
2ralbidv |
⊢ ( 𝑎 = 𝐵 → ( ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
67 |
61 66
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑎 ∈ { 𝐴 , 𝐵 } ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ) |
68 |
|
oveq2 |
⊢ ( 𝑏 = 𝐴 → ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) |
69 |
68
|
oveq1d |
⊢ ( 𝑏 = 𝐴 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
70 |
|
oveq1 |
⊢ ( 𝑏 = 𝐴 → ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) |
71 |
70
|
oveq2d |
⊢ ( 𝑏 = 𝐴 → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
72 |
69 71
|
eqeq12d |
⊢ ( 𝑏 = 𝐴 → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
73 |
72
|
ralbidv |
⊢ ( 𝑏 = 𝐴 → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
74 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) |
75 |
74
|
oveq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
76 |
|
oveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) |
77 |
76
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
78 |
75 77
|
eqeq12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
79 |
78
|
ralbidv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
80 |
73 79
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ) |
81 |
|
oveq2 |
⊢ ( 𝑏 = 𝐴 → ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) |
82 |
81
|
oveq1d |
⊢ ( 𝑏 = 𝐴 → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
83 |
70
|
oveq2d |
⊢ ( 𝑏 = 𝐴 → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
84 |
82 83
|
eqeq12d |
⊢ ( 𝑏 = 𝐴 → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
85 |
84
|
ralbidv |
⊢ ( 𝑏 = 𝐴 → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
86 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) |
87 |
86
|
oveq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
88 |
76
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
89 |
87 88
|
eqeq12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
90 |
89
|
ralbidv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
91 |
85 90
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ) |
92 |
80 91
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ↔ ( ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ∧ ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ) ) |
93 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) ) |
94 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) |
95 |
94
|
oveq2d |
⊢ ( 𝑐 = 𝐴 → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
96 |
93 95
|
eqeq12d |
⊢ ( 𝑐 = 𝐴 → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) ) |
97 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) ) |
98 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) |
99 |
98
|
oveq2d |
⊢ ( 𝑐 = 𝐵 → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
100 |
97 99
|
eqeq12d |
⊢ ( 𝑐 = 𝐵 → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) |
101 |
96 100
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) |
102 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) ) |
103 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) |
104 |
103
|
oveq2d |
⊢ ( 𝑐 = 𝐴 → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
105 |
102 104
|
eqeq12d |
⊢ ( 𝑐 = 𝐴 → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) ) |
106 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) ) |
107 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) |
108 |
107
|
oveq2d |
⊢ ( 𝑐 = 𝐵 → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
109 |
106 108
|
eqeq12d |
⊢ ( 𝑐 = 𝐵 → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) |
110 |
105 109
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) |
111 |
101 110
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ↔ ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) |
112 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) ) |
113 |
94
|
oveq2d |
⊢ ( 𝑐 = 𝐴 → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
114 |
112 113
|
eqeq12d |
⊢ ( 𝑐 = 𝐴 → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) ) |
115 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) ) |
116 |
98
|
oveq2d |
⊢ ( 𝑐 = 𝐵 → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
117 |
115 116
|
eqeq12d |
⊢ ( 𝑐 = 𝐵 → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) |
118 |
114 117
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) |
119 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) ) |
120 |
103
|
oveq2d |
⊢ ( 𝑐 = 𝐴 → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
121 |
119 120
|
eqeq12d |
⊢ ( 𝑐 = 𝐴 → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) ) |
122 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) ) |
123 |
107
|
oveq2d |
⊢ ( 𝑐 = 𝐵 → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
124 |
122 123
|
eqeq12d |
⊢ ( 𝑐 = 𝐵 → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) |
125 |
121 124
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) |
126 |
118 125
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ↔ ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) |
127 |
111 126
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ∧ ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ↔ ( ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ∧ ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) ) |
128 |
67 92 127
|
3bitrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑎 ∈ { 𝐴 , 𝐵 } ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ∧ ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) ) |
129 |
128
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑎 ∈ { 𝐴 , 𝐵 } ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ∧ ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) ) |
130 |
39 56 129
|
mpbir2and |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑎 ∈ { 𝐴 , 𝐵 } ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
131 |
4 130
|
syl |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 → ∀ 𝑎 ∈ { 𝐴 , 𝐵 } ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
132 |
2 1
|
eqtr2i |
⊢ { 𝐴 , 𝐵 } = ( Base ‘ 𝑀 ) |
133 |
132 8
|
issgrp |
⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑎 ∈ { 𝐴 , 𝐵 } ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
134 |
7 131 133
|
sylanbrc |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 → 𝑀 ∈ Smgrp ) |