| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s | ⊢ 𝑆  =  { 𝐴 ,  𝐵 } | 
						
							| 2 |  | mgm2nsgrp.b | ⊢ ( Base ‘ 𝑀 )  =  𝑆 | 
						
							| 3 |  | sgrp2nmnd.o | ⊢ ( +g ‘ 𝑀 )  =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 ) ) | 
						
							| 4 | 1 | hashprdifel | ⊢ ( ( ♯ ‘ 𝑆 )  =  2  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 ) ) | 
						
							| 5 |  | 3simpa | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) ) | 
						
							| 6 | 1 2 3 | sgrp2nmndlem1 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  𝑀  ∈  Mgm ) | 
						
							| 7 | 4 5 6 | 3syl | ⊢ ( ( ♯ ‘ 𝑆 )  =  2  →  𝑀  ∈  Mgm ) | 
						
							| 8 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 9 | 1 2 3 8 | sgrp2nmndlem2 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐴  ∈  𝑆 )  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐴 ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐴  ∈  𝑆 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 11 | 9 | oveq2d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐴  ∈  𝑆 )  →  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 12 | 10 11 | eqtr4d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐴  ∈  𝑆 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) | 
						
							| 13 | 12 | anidms | ⊢ ( 𝐴  ∈  𝑆  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) | 
						
							| 15 | 9 | anidms | ⊢ ( 𝐴  ∈  𝑆  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐴 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐴 ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 18 | 1 2 3 8 | sgrp2nmndlem2 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 )  =  𝐴 ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 20 | 16 19 18 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 21 | 17 20 | eqtrd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 22 | 21 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 23 | 14 22 | jca | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) | 
						
							| 24 | 18 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 )  =  𝐴 ) | 
						
							| 25 | 1 2 3 8 | sgrp2nmndlem3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐵 ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 27 | 24 | oveq1d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 28 | 15 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 )  =  𝐴 ) | 
						
							| 29 | 27 28 | eqtrd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  𝐴 ) | 
						
							| 30 | 24 26 29 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) | 
						
							| 31 |  | simp2 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  𝑆 ) | 
						
							| 32 | 1 2 3 8 | sgrp2nmndlem3 | ⊢ ( ( 𝐵  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 )  =  𝐵 ) | 
						
							| 33 | 31 32 | syld3an1 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 )  =  𝐵 ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 35 | 18 | oveq1d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 36 | 35 18 | eqtrd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  𝐴 ) | 
						
							| 37 | 36 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  𝐴 ) | 
						
							| 38 | 24 34 37 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 39 | 23 30 38 | jca32 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) )  ∧  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) | 
						
							| 40 | 25 | oveq1d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 41 | 28 | oveq2d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 42 | 40 41 | eqtr4d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) | 
						
							| 43 | 24 | oveq2d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 44 | 25 | oveq1d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 45 | 44 33 | eqtrd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  𝐵 ) | 
						
							| 46 | 25 43 45 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 47 | 42 46 | jca | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) | 
						
							| 48 | 25 | oveq2d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 49 | 33 | oveq1d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 50 | 49 25 | eqtrd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  𝐵 ) | 
						
							| 51 | 33 48 50 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) | 
						
							| 52 | 32 | oveq1d | ⊢ ( ( 𝐵  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 53 | 32 | oveq2d | ⊢ ( ( 𝐵  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 54 | 52 53 | eqtr4d | ⊢ ( ( 𝐵  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 55 | 31 54 | syld3an1 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 56 | 47 51 55 | jca32 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) )  ∧  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) | 
						
							| 57 |  | oveq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ) | 
						
							| 58 | 57 | oveq1d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) ) | 
						
							| 59 |  | oveq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) | 
						
							| 60 | 58 59 | eqeq12d | ⊢ ( 𝑎  =  𝐴  →  ( ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 61 | 60 | 2ralbidv | ⊢ ( 𝑎  =  𝐴  →  ( ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 62 |  | oveq1 | ⊢ ( 𝑎  =  𝐵  →  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ) | 
						
							| 63 | 62 | oveq1d | ⊢ ( 𝑎  =  𝐵  →  ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) ) | 
						
							| 64 |  | oveq1 | ⊢ ( 𝑎  =  𝐵  →  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) | 
						
							| 65 | 63 64 | eqeq12d | ⊢ ( 𝑎  =  𝐵  →  ( ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 66 | 65 | 2ralbidv | ⊢ ( 𝑎  =  𝐵  →  ( ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 67 | 61 66 | ralprg | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ∀ 𝑎  ∈  { 𝐴 ,  𝐵 } ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ∧  ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ) | 
						
							| 68 |  | oveq2 | ⊢ ( 𝑏  =  𝐴  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( 𝑏  =  𝐴  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) ) | 
						
							| 70 |  | oveq1 | ⊢ ( 𝑏  =  𝐴  →  ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( 𝑏  =  𝐴  →  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) | 
						
							| 72 | 69 71 | eqeq12d | ⊢ ( 𝑏  =  𝐴  →  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 73 | 72 | ralbidv | ⊢ ( 𝑏  =  𝐴  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 74 |  | oveq2 | ⊢ ( 𝑏  =  𝐵  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 75 | 74 | oveq1d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) ) | 
						
							| 76 |  | oveq1 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) | 
						
							| 77 | 76 | oveq2d | ⊢ ( 𝑏  =  𝐵  →  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) | 
						
							| 78 | 75 77 | eqeq12d | ⊢ ( 𝑏  =  𝐵  →  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 79 | 78 | ralbidv | ⊢ ( 𝑏  =  𝐵  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 80 | 73 79 | ralprg | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ) | 
						
							| 81 |  | oveq2 | ⊢ ( 𝑏  =  𝐴  →  ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 82 | 81 | oveq1d | ⊢ ( 𝑏  =  𝐴  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) ) | 
						
							| 83 | 70 | oveq2d | ⊢ ( 𝑏  =  𝐴  →  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) | 
						
							| 84 | 82 83 | eqeq12d | ⊢ ( 𝑏  =  𝐴  →  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 85 | 84 | ralbidv | ⊢ ( 𝑏  =  𝐴  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 86 |  | oveq2 | ⊢ ( 𝑏  =  𝐵  →  ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 87 | 86 | oveq1d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) ) | 
						
							| 88 | 76 | oveq2d | ⊢ ( 𝑏  =  𝐵  →  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) | 
						
							| 89 | 87 88 | eqeq12d | ⊢ ( 𝑏  =  𝐵  →  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 90 | 89 | ralbidv | ⊢ ( 𝑏  =  𝐵  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 91 | 85 90 | ralprg | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ) | 
						
							| 92 | 80 91 | anbi12d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ∧  ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) )  ↔  ( ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) )  ∧  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ) ) | 
						
							| 93 |  | oveq2 | ⊢ ( 𝑐  =  𝐴  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 94 |  | oveq2 | ⊢ ( 𝑐  =  𝐴  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 95 | 94 | oveq2d | ⊢ ( 𝑐  =  𝐴  →  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) | 
						
							| 96 | 93 95 | eqeq12d | ⊢ ( 𝑐  =  𝐴  →  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) ) | 
						
							| 97 |  | oveq2 | ⊢ ( 𝑐  =  𝐵  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 98 |  | oveq2 | ⊢ ( 𝑐  =  𝐵  →  ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 99 | 98 | oveq2d | ⊢ ( 𝑐  =  𝐵  →  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 100 | 97 99 | eqeq12d | ⊢ ( 𝑐  =  𝐵  →  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) | 
						
							| 101 | 96 100 | ralprg | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) | 
						
							| 102 |  | oveq2 | ⊢ ( 𝑐  =  𝐴  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 103 |  | oveq2 | ⊢ ( 𝑐  =  𝐴  →  ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 104 | 103 | oveq2d | ⊢ ( 𝑐  =  𝐴  →  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) | 
						
							| 105 | 102 104 | eqeq12d | ⊢ ( 𝑐  =  𝐴  →  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) ) | 
						
							| 106 |  | oveq2 | ⊢ ( 𝑐  =  𝐵  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 107 |  | oveq2 | ⊢ ( 𝑐  =  𝐵  →  ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 108 | 107 | oveq2d | ⊢ ( 𝑐  =  𝐵  →  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 109 | 106 108 | eqeq12d | ⊢ ( 𝑐  =  𝐵  →  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) | 
						
							| 110 | 105 109 | ralprg | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) | 
						
							| 111 | 101 110 | anbi12d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) )  ↔  ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) )  ∧  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) | 
						
							| 112 |  | oveq2 | ⊢ ( 𝑐  =  𝐴  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 113 | 94 | oveq2d | ⊢ ( 𝑐  =  𝐴  →  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) | 
						
							| 114 | 112 113 | eqeq12d | ⊢ ( 𝑐  =  𝐴  →  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) ) | 
						
							| 115 |  | oveq2 | ⊢ ( 𝑐  =  𝐵  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 116 | 98 | oveq2d | ⊢ ( 𝑐  =  𝐵  →  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 117 | 115 116 | eqeq12d | ⊢ ( 𝑐  =  𝐵  →  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) | 
						
							| 118 | 114 117 | ralprg | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) | 
						
							| 119 |  | oveq2 | ⊢ ( 𝑐  =  𝐴  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) ) | 
						
							| 120 | 103 | oveq2d | ⊢ ( 𝑐  =  𝐴  →  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) | 
						
							| 121 | 119 120 | eqeq12d | ⊢ ( 𝑐  =  𝐴  →  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) ) | 
						
							| 122 |  | oveq2 | ⊢ ( 𝑐  =  𝐵  →  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) ) | 
						
							| 123 | 107 | oveq2d | ⊢ ( 𝑐  =  𝐵  →  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 124 | 122 123 | eqeq12d | ⊢ ( 𝑐  =  𝐵  →  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) | 
						
							| 125 | 121 124 | ralprg | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) | 
						
							| 126 | 118 125 | anbi12d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) )  ↔  ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) )  ∧  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) | 
						
							| 127 | 111 126 | anbi12d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) )  ∧  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) )  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) )  ↔  ( ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) )  ∧  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) )  ∧  ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) )  ∧  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) ) | 
						
							| 128 | 67 92 127 | 3bitrd | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ∀ 𝑎  ∈  { 𝐴 ,  𝐵 } ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) )  ∧  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) )  ∧  ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) )  ∧  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) ) | 
						
							| 129 | 128 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ∀ 𝑎  ∈  { 𝐴 ,  𝐵 } ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) )  ↔  ( ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) )  ∧  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) )  ∧  ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) )  ∧  ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) )  ∧  ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 )  =  ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) ) | 
						
							| 130 | 39 56 129 | mpbir2and | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ∀ 𝑎  ∈  { 𝐴 ,  𝐵 } ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) | 
						
							| 131 | 4 130 | syl | ⊢ ( ( ♯ ‘ 𝑆 )  =  2  →  ∀ 𝑎  ∈  { 𝐴 ,  𝐵 } ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) | 
						
							| 132 | 2 1 | eqtr2i | ⊢ { 𝐴 ,  𝐵 }  =  ( Base ‘ 𝑀 ) | 
						
							| 133 | 132 8 | issgrp | ⊢ ( 𝑀  ∈  Smgrp  ↔  ( 𝑀  ∈  Mgm  ∧  ∀ 𝑎  ∈  { 𝐴 ,  𝐵 } ∀ 𝑏  ∈  { 𝐴 ,  𝐵 } ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) | 
						
							| 134 | 7 131 133 | sylanbrc | ⊢ ( ( ♯ ‘ 𝑆 )  =  2  →  𝑀  ∈  Smgrp ) |