| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgm2nsgrp.s |
⊢ 𝑆 = { 𝐴 , 𝐵 } |
| 2 |
|
mgm2nsgrp.b |
⊢ ( Base ‘ 𝑀 ) = 𝑆 |
| 3 |
|
sgrp2nmnd.o |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) ) |
| 4 |
1
|
hashprdifel |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) ) |
| 5 |
|
3simpa |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) |
| 6 |
1 2 3
|
sgrp2nmndlem1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝑀 ∈ Mgm ) |
| 7 |
4 5 6
|
3syl |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 → 𝑀 ∈ Mgm ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 9 |
1 2 3 8
|
sgrp2nmndlem2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) = 𝐴 ) |
| 10 |
9
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 11 |
9
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 12 |
10 11
|
eqtr4d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
| 13 |
12
|
anidms |
⊢ ( 𝐴 ∈ 𝑆 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
| 15 |
9
|
anidms |
⊢ ( 𝐴 ∈ 𝑆 → ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) = 𝐴 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) = 𝐴 ) |
| 17 |
16
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 18 |
1 2 3 8
|
sgrp2nmndlem2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) = 𝐴 ) |
| 19 |
18
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 20 |
16 19 18
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
| 21 |
17 20
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
| 22 |
21
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
| 23 |
14 22
|
jca |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) |
| 24 |
18
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) = 𝐴 ) |
| 25 |
1 2 3 8
|
sgrp2nmndlem3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) = 𝐵 ) |
| 26 |
25
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 27 |
24
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 28 |
15
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) = 𝐴 ) |
| 29 |
27 28
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = 𝐴 ) |
| 30 |
24 26 29
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
| 31 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑆 ) |
| 32 |
1 2 3 8
|
sgrp2nmndlem3 |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) = 𝐵 ) |
| 33 |
31 32
|
syld3an1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) = 𝐵 ) |
| 34 |
33
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 35 |
18
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 36 |
35 18
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = 𝐴 ) |
| 37 |
36
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = 𝐴 ) |
| 38 |
24 34 37
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
| 39 |
23 30 38
|
jca32 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) |
| 40 |
25
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 41 |
28
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 42 |
40 41
|
eqtr4d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
| 43 |
24
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 44 |
25
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 45 |
44 33
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = 𝐵 ) |
| 46 |
25 43 45
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
| 47 |
42 46
|
jca |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) |
| 48 |
25
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 49 |
33
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 50 |
49 25
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = 𝐵 ) |
| 51 |
33 48 50
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
| 52 |
32
|
oveq1d |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 53 |
32
|
oveq2d |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 54 |
52 53
|
eqtr4d |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
| 55 |
31 54
|
syld3an1 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
| 56 |
47 51 55
|
jca32 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) |
| 57 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ) |
| 58 |
57
|
oveq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
| 59 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
| 60 |
58 59
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 61 |
60
|
2ralbidv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 62 |
|
oveq1 |
⊢ ( 𝑎 = 𝐵 → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ) |
| 63 |
62
|
oveq1d |
⊢ ( 𝑎 = 𝐵 → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
| 64 |
|
oveq1 |
⊢ ( 𝑎 = 𝐵 → ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
| 65 |
63 64
|
eqeq12d |
⊢ ( 𝑎 = 𝐵 → ( ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 66 |
65
|
2ralbidv |
⊢ ( 𝑎 = 𝐵 → ( ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 67 |
61 66
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑎 ∈ { 𝐴 , 𝐵 } ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ) |
| 68 |
|
oveq2 |
⊢ ( 𝑏 = 𝐴 → ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 69 |
68
|
oveq1d |
⊢ ( 𝑏 = 𝐴 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
| 70 |
|
oveq1 |
⊢ ( 𝑏 = 𝐴 → ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) |
| 71 |
70
|
oveq2d |
⊢ ( 𝑏 = 𝐴 → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
| 72 |
69 71
|
eqeq12d |
⊢ ( 𝑏 = 𝐴 → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 73 |
72
|
ralbidv |
⊢ ( 𝑏 = 𝐴 → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 74 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 75 |
74
|
oveq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
| 76 |
|
oveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) |
| 77 |
76
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
| 78 |
75 77
|
eqeq12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 79 |
78
|
ralbidv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 80 |
73 79
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ) |
| 81 |
|
oveq2 |
⊢ ( 𝑏 = 𝐴 → ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 82 |
81
|
oveq1d |
⊢ ( 𝑏 = 𝐴 → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
| 83 |
70
|
oveq2d |
⊢ ( 𝑏 = 𝐴 → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
| 84 |
82 83
|
eqeq12d |
⊢ ( 𝑏 = 𝐴 → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 85 |
84
|
ralbidv |
⊢ ( 𝑏 = 𝐴 → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 86 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 87 |
86
|
oveq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
| 88 |
76
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
| 89 |
87 88
|
eqeq12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 90 |
89
|
ralbidv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 91 |
85 90
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ) |
| 92 |
80 91
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ↔ ( ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ∧ ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ) ) |
| 93 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 94 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 95 |
94
|
oveq2d |
⊢ ( 𝑐 = 𝐴 → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
| 96 |
93 95
|
eqeq12d |
⊢ ( 𝑐 = 𝐴 → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) ) |
| 97 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 98 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 99 |
98
|
oveq2d |
⊢ ( 𝑐 = 𝐵 → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
| 100 |
97 99
|
eqeq12d |
⊢ ( 𝑐 = 𝐵 → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) |
| 101 |
96 100
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) |
| 102 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 103 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 104 |
103
|
oveq2d |
⊢ ( 𝑐 = 𝐴 → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
| 105 |
102 104
|
eqeq12d |
⊢ ( 𝑐 = 𝐴 → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) ) |
| 106 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 107 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 108 |
107
|
oveq2d |
⊢ ( 𝑐 = 𝐵 → ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
| 109 |
106 108
|
eqeq12d |
⊢ ( 𝑐 = 𝐵 → ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) |
| 110 |
105 109
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) |
| 111 |
101 110
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ↔ ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) |
| 112 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 113 |
94
|
oveq2d |
⊢ ( 𝑐 = 𝐴 → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
| 114 |
112 113
|
eqeq12d |
⊢ ( 𝑐 = 𝐴 → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ) ) |
| 115 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 116 |
98
|
oveq2d |
⊢ ( 𝑐 = 𝐵 → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
| 117 |
115 116
|
eqeq12d |
⊢ ( 𝑐 = 𝐵 → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) |
| 118 |
114 117
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) |
| 119 |
|
oveq2 |
⊢ ( 𝑐 = 𝐴 → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) ) |
| 120 |
103
|
oveq2d |
⊢ ( 𝑐 = 𝐴 → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) |
| 121 |
119 120
|
eqeq12d |
⊢ ( 𝑐 = 𝐴 → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ) ) |
| 122 |
|
oveq2 |
⊢ ( 𝑐 = 𝐵 → ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 123 |
107
|
oveq2d |
⊢ ( 𝑐 = 𝐵 → ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) |
| 124 |
122 123
|
eqeq12d |
⊢ ( 𝑐 = 𝐵 → ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) |
| 125 |
121 124
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) |
| 126 |
118 125
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ↔ ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) |
| 127 |
111 126
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ∧ ( ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝑐 ) ) ∧ ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) ↔ ( ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ∧ ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) ) |
| 128 |
67 92 127
|
3bitrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑎 ∈ { 𝐴 , 𝐵 } ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ∧ ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) ) |
| 129 |
128
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑎 ∈ { 𝐴 , 𝐵 } ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ↔ ( ( ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ∧ ( ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ∧ ( ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐴 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐴 ) ) ∧ ( ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ( +g ‘ 𝑀 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝑀 ) ( 𝐵 ( +g ‘ 𝑀 ) 𝐵 ) ) ) ) ) ) ) |
| 130 |
39 56 129
|
mpbir2and |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑎 ∈ { 𝐴 , 𝐵 } ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
| 131 |
4 130
|
syl |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 → ∀ 𝑎 ∈ { 𝐴 , 𝐵 } ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
| 132 |
2 1
|
eqtr2i |
⊢ { 𝐴 , 𝐵 } = ( Base ‘ 𝑀 ) |
| 133 |
132 8
|
issgrp |
⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑎 ∈ { 𝐴 , 𝐵 } ∀ 𝑏 ∈ { 𝐴 , 𝐵 } ∀ 𝑐 ∈ { 𝐴 , 𝐵 } ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
| 134 |
7 131 133
|
sylanbrc |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 → 𝑀 ∈ Smgrp ) |