| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s | ⊢ 𝑆  =  { 𝐴 ,  𝐵 } | 
						
							| 2 |  | mgm2nsgrp.b | ⊢ ( Base ‘ 𝑀 )  =  𝑆 | 
						
							| 3 |  | sgrp2nmnd.o | ⊢ ( +g ‘ 𝑀 )  =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  if ( 𝑥  =  𝐴 ,  𝐴 ,  𝐵 ) ) | 
						
							| 4 |  | prid1g | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  { 𝐴 ,  𝐵 } ) | 
						
							| 5 | 4 1 | eleqtrrdi | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  𝑆 ) | 
						
							| 6 |  | prid2g | ⊢ ( 𝐵  ∈  𝑊  →  𝐵  ∈  { 𝐴 ,  𝐵 } ) | 
						
							| 7 | 6 1 | eleqtrrdi | ⊢ ( 𝐵  ∈  𝑊  →  𝐵  ∈  𝑆 ) | 
						
							| 8 | 2 | eqcomi | ⊢ 𝑆  =  ( Base ‘ 𝑀 ) | 
						
							| 9 |  | ne0i | ⊢ ( 𝐴  ∈  𝑆  →  𝑆  ≠  ∅ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  𝑆  ≠  ∅ ) | 
						
							| 11 |  | simpll | ⊢ ( ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝐴  ∈  𝑆 ) | 
						
							| 12 |  | simplr | ⊢ ( ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝐵  ∈  𝑆 ) | 
						
							| 13 | 8 3 10 11 12 | opifismgm | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  𝑀  ∈  Mgm ) | 
						
							| 14 | 5 7 13 | syl2an | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  𝑀  ∈  Mgm ) |