Metamath Proof Explorer


Theorem sgrp2nmnd

Description: A small semigroup (with two elements) which is not a monoid. (Contributed by AV, 26-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s 𝑆 = { 𝐴 , 𝐵 }
mgm2nsgrp.b ( Base ‘ 𝑀 ) = 𝑆
sgrp2nmnd.o ( +g𝑀 ) = ( 𝑥𝑆 , 𝑦𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) )
Assertion sgrp2nmnd ( ( ♯ ‘ 𝑆 ) = 2 → ( 𝑀 ∈ Smgrp ∧ 𝑀 ∉ Mnd ) )

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s 𝑆 = { 𝐴 , 𝐵 }
2 mgm2nsgrp.b ( Base ‘ 𝑀 ) = 𝑆
3 sgrp2nmnd.o ( +g𝑀 ) = ( 𝑥𝑆 , 𝑦𝑆 ↦ if ( 𝑥 = 𝐴 , 𝐴 , 𝐵 ) )
4 1 2 3 sgrp2nmndlem4 ( ( ♯ ‘ 𝑆 ) = 2 → 𝑀 ∈ Smgrp )
5 1 2 3 sgrp2nmndlem5 ( ( ♯ ‘ 𝑆 ) = 2 → 𝑀 ∉ Mnd )
6 4 5 jca ( ( ♯ ‘ 𝑆 ) = 2 → ( 𝑀 ∈ Smgrp ∧ 𝑀 ∉ Mnd ) )