Metamath Proof Explorer


Theorem mgmnsgrpex

Description: There is a magma which is not a semigroup. (Contributed by AV, 29-Jan-2020)

Ref Expression
Assertion mgmnsgrpex 𝑚 ∈ Mgm 𝑚 ∉ Smgrp

Proof

Step Hyp Ref Expression
1 prhash2ex ( ♯ ‘ { 0 , 1 } ) = 2
2 c0ex 0 ∈ V
3 1ex 1 ∈ V
4 2 3 pm3.2i ( 0 ∈ V ∧ 1 ∈ V )
5 eqid { 0 , 1 } = { 0 , 1 }
6 prex { 0 , 1 } ∈ V
7 eqeq1 ( 𝑥 = 𝑢 → ( 𝑥 = 0 ↔ 𝑢 = 0 ) )
8 7 anbi1d ( 𝑥 = 𝑢 → ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) ↔ ( 𝑢 = 0 ∧ 𝑦 = 0 ) ) )
9 8 ifbid ( 𝑥 = 𝑢 → if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) = if ( ( 𝑢 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) )
10 eqeq1 ( 𝑦 = 𝑣 → ( 𝑦 = 0 ↔ 𝑣 = 0 ) )
11 10 anbi2d ( 𝑦 = 𝑣 → ( ( 𝑢 = 0 ∧ 𝑦 = 0 ) ↔ ( 𝑢 = 0 ∧ 𝑣 = 0 ) ) )
12 11 ifbid ( 𝑦 = 𝑣 → if ( ( 𝑢 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) = if ( ( 𝑢 = 0 ∧ 𝑣 = 0 ) , 1 , 0 ) )
13 9 12 cbvmpov ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) = ( 𝑢 ∈ { 0 , 1 } , 𝑣 ∈ { 0 , 1 } ↦ if ( ( 𝑢 = 0 ∧ 𝑣 = 0 ) , 1 , 0 ) )
14 13 opeq2i ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ = ⟨ ( +g ‘ ndx ) , ( 𝑢 ∈ { 0 , 1 } , 𝑣 ∈ { 0 , 1 } ↦ if ( ( 𝑢 = 0 ∧ 𝑣 = 0 ) , 1 , 0 ) ) ⟩
15 14 preq2i { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } = { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑢 ∈ { 0 , 1 } , 𝑣 ∈ { 0 , 1 } ↦ if ( ( 𝑢 = 0 ∧ 𝑣 = 0 ) , 1 , 0 ) ) ⟩ }
16 15 grpbase ( { 0 , 1 } ∈ V → { 0 , 1 } = ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } ) )
17 6 16 ax-mp { 0 , 1 } = ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } )
18 17 eqcomi ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } ) = { 0 , 1 }
19 6 6 mpoex ( 𝑢 ∈ { 0 , 1 } , 𝑣 ∈ { 0 , 1 } ↦ if ( ( 𝑢 = 0 ∧ 𝑣 = 0 ) , 1 , 0 ) ) ∈ V
20 15 grpplusg ( ( 𝑢 ∈ { 0 , 1 } , 𝑣 ∈ { 0 , 1 } ↦ if ( ( 𝑢 = 0 ∧ 𝑣 = 0 ) , 1 , 0 ) ) ∈ V → ( 𝑢 ∈ { 0 , 1 } , 𝑣 ∈ { 0 , 1 } ↦ if ( ( 𝑢 = 0 ∧ 𝑣 = 0 ) , 1 , 0 ) ) = ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } ) )
21 19 20 ax-mp ( 𝑢 ∈ { 0 , 1 } , 𝑣 ∈ { 0 , 1 } ↦ if ( ( 𝑢 = 0 ∧ 𝑣 = 0 ) , 1 , 0 ) ) = ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } )
22 21 eqcomi ( +g ‘ { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } ) = ( 𝑢 ∈ { 0 , 1 } , 𝑣 ∈ { 0 , 1 } ↦ if ( ( 𝑢 = 0 ∧ 𝑣 = 0 ) , 1 , 0 ) )
23 5 18 22 mgm2nsgrplem1 ( ( 0 ∈ V ∧ 1 ∈ V ) → { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } ∈ Mgm )
24 4 23 mp1i ( ( ♯ ‘ { 0 , 1 } ) = 2 → { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } ∈ Mgm )
25 neleq1 ( 𝑚 = { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } → ( 𝑚 ∉ Smgrp ↔ { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } ∉ Smgrp ) )
26 25 adantl ( ( ( ♯ ‘ { 0 , 1 } ) = 2 ∧ 𝑚 = { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } ) → ( 𝑚 ∉ Smgrp ↔ { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } ∉ Smgrp ) )
27 5 18 22 mgm2nsgrplem4 ( ( ♯ ‘ { 0 , 1 } ) = 2 → { ⟨ ( Base ‘ ndx ) , { 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥 ∈ { 0 , 1 } , 𝑦 ∈ { 0 , 1 } ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 1 , 0 ) ) ⟩ } ∉ Smgrp )
28 24 26 27 rspcedvd ( ( ♯ ‘ { 0 , 1 } ) = 2 → ∃ 𝑚 ∈ Mgm 𝑚 ∉ Smgrp )
29 1 28 ax-mp 𝑚 ∈ Mgm 𝑚 ∉ Smgrp