Step |
Hyp |
Ref |
Expression |
1 |
|
prhash2ex |
|- ( # ` { 0 , 1 } ) = 2 |
2 |
|
c0ex |
|- 0 e. _V |
3 |
|
1ex |
|- 1 e. _V |
4 |
2 3
|
pm3.2i |
|- ( 0 e. _V /\ 1 e. _V ) |
5 |
|
eqid |
|- { 0 , 1 } = { 0 , 1 } |
6 |
|
prex |
|- { 0 , 1 } e. _V |
7 |
|
eqeq1 |
|- ( x = u -> ( x = 0 <-> u = 0 ) ) |
8 |
7
|
anbi1d |
|- ( x = u -> ( ( x = 0 /\ y = 0 ) <-> ( u = 0 /\ y = 0 ) ) ) |
9 |
8
|
ifbid |
|- ( x = u -> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) = if ( ( u = 0 /\ y = 0 ) , 1 , 0 ) ) |
10 |
|
eqeq1 |
|- ( y = v -> ( y = 0 <-> v = 0 ) ) |
11 |
10
|
anbi2d |
|- ( y = v -> ( ( u = 0 /\ y = 0 ) <-> ( u = 0 /\ v = 0 ) ) ) |
12 |
11
|
ifbid |
|- ( y = v -> if ( ( u = 0 /\ y = 0 ) , 1 , 0 ) = if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) |
13 |
9 12
|
cbvmpov |
|- ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) = ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) |
14 |
13
|
opeq2i |
|- <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. = <. ( +g ` ndx ) , ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) >. |
15 |
14
|
preq2i |
|- { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) >. } |
16 |
15
|
grpbase |
|- ( { 0 , 1 } e. _V -> { 0 , 1 } = ( Base ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) ) |
17 |
6 16
|
ax-mp |
|- { 0 , 1 } = ( Base ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) |
18 |
17
|
eqcomi |
|- ( Base ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) = { 0 , 1 } |
19 |
6 6
|
mpoex |
|- ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) e. _V |
20 |
15
|
grpplusg |
|- ( ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) e. _V -> ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) = ( +g ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) ) |
21 |
19 20
|
ax-mp |
|- ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) = ( +g ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) |
22 |
21
|
eqcomi |
|- ( +g ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) = ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) |
23 |
5 18 22
|
mgm2nsgrplem1 |
|- ( ( 0 e. _V /\ 1 e. _V ) -> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } e. Mgm ) |
24 |
4 23
|
mp1i |
|- ( ( # ` { 0 , 1 } ) = 2 -> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } e. Mgm ) |
25 |
|
neleq1 |
|- ( m = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } -> ( m e/ Smgrp <-> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } e/ Smgrp ) ) |
26 |
25
|
adantl |
|- ( ( ( # ` { 0 , 1 } ) = 2 /\ m = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) -> ( m e/ Smgrp <-> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } e/ Smgrp ) ) |
27 |
5 18 22
|
mgm2nsgrplem4 |
|- ( ( # ` { 0 , 1 } ) = 2 -> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } e/ Smgrp ) |
28 |
24 26 27
|
rspcedvd |
|- ( ( # ` { 0 , 1 } ) = 2 -> E. m e. Mgm m e/ Smgrp ) |
29 |
1 28
|
ax-mp |
|- E. m e. Mgm m e/ Smgrp |