| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prhash2ex |  |-  ( # ` { 0 , 1 } ) = 2 | 
						
							| 2 |  | c0ex |  |-  0 e. _V | 
						
							| 3 |  | 1ex |  |-  1 e. _V | 
						
							| 4 | 2 3 | pm3.2i |  |-  ( 0 e. _V /\ 1 e. _V ) | 
						
							| 5 |  | eqid |  |-  { 0 , 1 } = { 0 , 1 } | 
						
							| 6 |  | prex |  |-  { 0 , 1 } e. _V | 
						
							| 7 |  | eqeq1 |  |-  ( x = u -> ( x = 0 <-> u = 0 ) ) | 
						
							| 8 | 7 | anbi1d |  |-  ( x = u -> ( ( x = 0 /\ y = 0 ) <-> ( u = 0 /\ y = 0 ) ) ) | 
						
							| 9 | 8 | ifbid |  |-  ( x = u -> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) = if ( ( u = 0 /\ y = 0 ) , 1 , 0 ) ) | 
						
							| 10 |  | eqeq1 |  |-  ( y = v -> ( y = 0 <-> v = 0 ) ) | 
						
							| 11 | 10 | anbi2d |  |-  ( y = v -> ( ( u = 0 /\ y = 0 ) <-> ( u = 0 /\ v = 0 ) ) ) | 
						
							| 12 | 11 | ifbid |  |-  ( y = v -> if ( ( u = 0 /\ y = 0 ) , 1 , 0 ) = if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) | 
						
							| 13 | 9 12 | cbvmpov |  |-  ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) = ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) | 
						
							| 14 | 13 | opeq2i |  |-  <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. = <. ( +g ` ndx ) , ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) >. | 
						
							| 15 | 14 | preq2i |  |-  { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) >. } | 
						
							| 16 | 15 | grpbase |  |-  ( { 0 , 1 } e. _V -> { 0 , 1 } = ( Base ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) ) | 
						
							| 17 | 6 16 | ax-mp |  |-  { 0 , 1 } = ( Base ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) | 
						
							| 18 | 17 | eqcomi |  |-  ( Base ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) = { 0 , 1 } | 
						
							| 19 | 6 6 | mpoex |  |-  ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) e. _V | 
						
							| 20 | 15 | grpplusg |  |-  ( ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) e. _V -> ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) = ( +g ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) ) | 
						
							| 21 | 19 20 | ax-mp |  |-  ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) = ( +g ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) | 
						
							| 22 | 21 | eqcomi |  |-  ( +g ` { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) = ( u e. { 0 , 1 } , v e. { 0 , 1 } |-> if ( ( u = 0 /\ v = 0 ) , 1 , 0 ) ) | 
						
							| 23 | 5 18 22 | mgm2nsgrplem1 |  |-  ( ( 0 e. _V /\ 1 e. _V ) -> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } e. Mgm ) | 
						
							| 24 | 4 23 | mp1i |  |-  ( ( # ` { 0 , 1 } ) = 2 -> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } e. Mgm ) | 
						
							| 25 |  | neleq1 |  |-  ( m = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } -> ( m e/ Smgrp <-> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } e/ Smgrp ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( # ` { 0 , 1 } ) = 2 /\ m = { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } ) -> ( m e/ Smgrp <-> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } e/ Smgrp ) ) | 
						
							| 27 | 5 18 22 | mgm2nsgrplem4 |  |-  ( ( # ` { 0 , 1 } ) = 2 -> { <. ( Base ` ndx ) , { 0 , 1 } >. , <. ( +g ` ndx ) , ( x e. { 0 , 1 } , y e. { 0 , 1 } |-> if ( ( x = 0 /\ y = 0 ) , 1 , 0 ) ) >. } e/ Smgrp ) | 
						
							| 28 | 24 26 27 | rspcedvd |  |-  ( ( # ` { 0 , 1 } ) = 2 -> E. m e. Mgm m e/ Smgrp ) | 
						
							| 29 | 1 28 | ax-mp |  |-  E. m e. Mgm m e/ Smgrp |