Metamath Proof Explorer


Theorem mgmnsgrpex

Description: There is a magma which is not a semigroup. (Contributed by AV, 29-Jan-2020)

Ref Expression
Assertion mgmnsgrpex m Mgm m Smgrp

Proof

Step Hyp Ref Expression
1 prhash2ex 0 1 = 2
2 c0ex 0 V
3 1ex 1 V
4 2 3 pm3.2i 0 V 1 V
5 eqid 0 1 = 0 1
6 prex 0 1 V
7 eqeq1 x = u x = 0 u = 0
8 7 anbi1d x = u x = 0 y = 0 u = 0 y = 0
9 8 ifbid x = u if x = 0 y = 0 1 0 = if u = 0 y = 0 1 0
10 eqeq1 y = v y = 0 v = 0
11 10 anbi2d y = v u = 0 y = 0 u = 0 v = 0
12 11 ifbid y = v if u = 0 y = 0 1 0 = if u = 0 v = 0 1 0
13 9 12 cbvmpov x 0 1 , y 0 1 if x = 0 y = 0 1 0 = u 0 1 , v 0 1 if u = 0 v = 0 1 0
14 13 opeq2i + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0 = + ndx u 0 1 , v 0 1 if u = 0 v = 0 1 0
15 14 preq2i Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0 = Base ndx 0 1 + ndx u 0 1 , v 0 1 if u = 0 v = 0 1 0
16 15 grpbase 0 1 V 0 1 = Base Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0
17 6 16 ax-mp 0 1 = Base Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0
18 17 eqcomi Base Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0 = 0 1
19 6 6 mpoex u 0 1 , v 0 1 if u = 0 v = 0 1 0 V
20 15 grpplusg u 0 1 , v 0 1 if u = 0 v = 0 1 0 V u 0 1 , v 0 1 if u = 0 v = 0 1 0 = + Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0
21 19 20 ax-mp u 0 1 , v 0 1 if u = 0 v = 0 1 0 = + Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0
22 21 eqcomi + Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0 = u 0 1 , v 0 1 if u = 0 v = 0 1 0
23 5 18 22 mgm2nsgrplem1 0 V 1 V Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0 Mgm
24 4 23 mp1i 0 1 = 2 Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0 Mgm
25 neleq1 m = Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0 m Smgrp Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0 Smgrp
26 25 adantl 0 1 = 2 m = Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0 m Smgrp Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0 Smgrp
27 5 18 22 mgm2nsgrplem4 0 1 = 2 Base ndx 0 1 + ndx x 0 1 , y 0 1 if x = 0 y = 0 1 0 Smgrp
28 24 26 27 rspcedvd 0 1 = 2 m Mgm m Smgrp
29 1 28 ax-mp m Mgm m Smgrp