Description: Lemma 4 for mgm2nsgrp : M is not a semigroup. (Contributed by AV, 28-Jan-2020) (Proof shortened by AV, 31-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mgm2nsgrp.s | |
|
mgm2nsgrp.b | |
||
mgm2nsgrp.o | |
||
Assertion | mgm2nsgrplem4 | Could not format assertion : No typesetting found for |- ( ( # ` S ) = 2 -> M e/ Smgrp ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgm2nsgrp.s | |
|
2 | mgm2nsgrp.b | |
|
3 | mgm2nsgrp.o | |
|
4 | 1 | hashprdifel | |
5 | simp1 | |
|
6 | simp2 | |
|
7 | 5 5 6 | 3jca | |
8 | 4 7 | syl | |
9 | simp3 | |
|
10 | eqid | |
|
11 | 1 2 3 10 | mgm2nsgrplem2 | |
12 | 11 | 3adant3 | |
13 | 1 2 3 10 | mgm2nsgrplem3 | |
14 | 13 | 3adant3 | |
15 | 9 12 14 | 3netr4d | |
16 | 4 15 | syl | |
17 | 2 | eqcomi | |
18 | 17 10 | isnsgrp | Could not format ( ( A e. S /\ A e. S /\ B e. S ) -> ( ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) -> M e/ Smgrp ) ) : No typesetting found for |- ( ( A e. S /\ A e. S /\ B e. S ) -> ( ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) -> M e/ Smgrp ) ) with typecode |- |
19 | 8 16 18 | sylc | Could not format ( ( # ` S ) = 2 -> M e/ Smgrp ) : No typesetting found for |- ( ( # ` S ) = 2 -> M e/ Smgrp ) with typecode |- |