Metamath Proof Explorer


Theorem mgm2nsgrplem4

Description: Lemma 4 for mgm2nsgrp : M is not a semigroup. (Contributed by AV, 28-Jan-2020) (Proof shortened by AV, 31-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S=AB
mgm2nsgrp.b BaseM=S
mgm2nsgrp.o +M=xS,ySifx=Ay=ABA
Assertion mgm2nsgrplem4 Could not format assertion : No typesetting found for |- ( ( # ` S ) = 2 -> M e/ Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S=AB
2 mgm2nsgrp.b BaseM=S
3 mgm2nsgrp.o +M=xS,ySifx=Ay=ABA
4 1 hashprdifel S=2ASBSAB
5 simp1 ASBSABAS
6 simp2 ASBSABBS
7 5 5 6 3jca ASBSABASASBS
8 4 7 syl S=2ASASBS
9 simp3 ASBSABAB
10 eqid +M=+M
11 1 2 3 10 mgm2nsgrplem2 ASBSA+MA+MB=A
12 11 3adant3 ASBSABA+MA+MB=A
13 1 2 3 10 mgm2nsgrplem3 ASBSA+MA+MB=B
14 13 3adant3 ASBSABA+MA+MB=B
15 9 12 14 3netr4d ASBSABA+MA+MBA+MA+MB
16 4 15 syl S=2A+MA+MBA+MA+MB
17 2 eqcomi S=BaseM
18 17 10 isnsgrp Could not format ( ( A e. S /\ A e. S /\ B e. S ) -> ( ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) -> M e/ Smgrp ) ) : No typesetting found for |- ( ( A e. S /\ A e. S /\ B e. S ) -> ( ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) -> M e/ Smgrp ) ) with typecode |-
19 8 16 18 sylc Could not format ( ( # ` S ) = 2 -> M e/ Smgrp ) : No typesetting found for |- ( ( # ` S ) = 2 -> M e/ Smgrp ) with typecode |-