Metamath Proof Explorer


Theorem mgm2nsgrplem4

Description: Lemma 4 for mgm2nsgrp : M is not a semigroup. (Contributed by AV, 28-Jan-2020) (Proof shortened by AV, 31-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s
|- S = { A , B }
mgm2nsgrp.b
|- ( Base ` M ) = S
mgm2nsgrp.o
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) )
Assertion mgm2nsgrplem4
|- ( ( # ` S ) = 2 -> M e/ Smgrp )

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s
 |-  S = { A , B }
2 mgm2nsgrp.b
 |-  ( Base ` M ) = S
3 mgm2nsgrp.o
 |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) )
4 1 hashprdifel
 |-  ( ( # ` S ) = 2 -> ( A e. S /\ B e. S /\ A =/= B ) )
5 simp1
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> A e. S )
6 simp2
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> B e. S )
7 5 5 6 3jca
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A e. S /\ A e. S /\ B e. S ) )
8 4 7 syl
 |-  ( ( # ` S ) = 2 -> ( A e. S /\ A e. S /\ B e. S ) )
9 simp3
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> A =/= B )
10 eqid
 |-  ( +g ` M ) = ( +g ` M )
11 1 2 3 10 mgm2nsgrplem2
 |-  ( ( A e. S /\ B e. S ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = A )
12 11 3adant3
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = A )
13 1 2 3 10 mgm2nsgrplem3
 |-  ( ( A e. S /\ B e. S ) -> ( A ( +g ` M ) ( A ( +g ` M ) B ) ) = B )
14 13 3adant3
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) ( A ( +g ` M ) B ) ) = B )
15 9 12 14 3netr4d
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) )
16 4 15 syl
 |-  ( ( # ` S ) = 2 -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) )
17 2 eqcomi
 |-  S = ( Base ` M )
18 17 10 isnsgrp
 |-  ( ( A e. S /\ A e. S /\ B e. S ) -> ( ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) -> M e/ Smgrp ) )
19 8 16 18 sylc
 |-  ( ( # ` S ) = 2 -> M e/ Smgrp )