Step |
Hyp |
Ref |
Expression |
1 |
|
mgm2nsgrp.s |
|- S = { A , B } |
2 |
|
mgm2nsgrp.b |
|- ( Base ` M ) = S |
3 |
|
mgm2nsgrp.o |
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) |
4 |
1
|
hashprdifel |
|- ( ( # ` S ) = 2 -> ( A e. S /\ B e. S /\ A =/= B ) ) |
5 |
|
simp1 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> A e. S ) |
6 |
|
simp2 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> B e. S ) |
7 |
5 5 6
|
3jca |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A e. S /\ A e. S /\ B e. S ) ) |
8 |
4 7
|
syl |
|- ( ( # ` S ) = 2 -> ( A e. S /\ A e. S /\ B e. S ) ) |
9 |
|
simp3 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> A =/= B ) |
10 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
11 |
1 2 3 10
|
mgm2nsgrplem2 |
|- ( ( A e. S /\ B e. S ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = A ) |
12 |
11
|
3adant3 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = A ) |
13 |
1 2 3 10
|
mgm2nsgrplem3 |
|- ( ( A e. S /\ B e. S ) -> ( A ( +g ` M ) ( A ( +g ` M ) B ) ) = B ) |
14 |
13
|
3adant3 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) ( A ( +g ` M ) B ) ) = B ) |
15 |
9 12 14
|
3netr4d |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) |
16 |
4 15
|
syl |
|- ( ( # ` S ) = 2 -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) |
17 |
2
|
eqcomi |
|- S = ( Base ` M ) |
18 |
17 10
|
isnsgrp |
|- ( ( A e. S /\ A e. S /\ B e. S ) -> ( ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) -> M e/ Smgrp ) ) |
19 |
8 16 18
|
sylc |
|- ( ( # ` S ) = 2 -> M e/ Smgrp ) |