| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s |  |-  S = { A , B } | 
						
							| 2 |  | mgm2nsgrp.b |  |-  ( Base ` M ) = S | 
						
							| 3 |  | mgm2nsgrp.o |  |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) | 
						
							| 4 | 1 | hashprdifel |  |-  ( ( # ` S ) = 2 -> ( A e. S /\ B e. S /\ A =/= B ) ) | 
						
							| 5 |  | simp1 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> A e. S ) | 
						
							| 6 |  | simp2 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> B e. S ) | 
						
							| 7 | 5 5 6 | 3jca |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A e. S /\ A e. S /\ B e. S ) ) | 
						
							| 8 | 4 7 | syl |  |-  ( ( # ` S ) = 2 -> ( A e. S /\ A e. S /\ B e. S ) ) | 
						
							| 9 |  | simp3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> A =/= B ) | 
						
							| 10 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 11 | 1 2 3 10 | mgm2nsgrplem2 |  |-  ( ( A e. S /\ B e. S ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = A ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = A ) | 
						
							| 13 | 1 2 3 10 | mgm2nsgrplem3 |  |-  ( ( A e. S /\ B e. S ) -> ( A ( +g ` M ) ( A ( +g ` M ) B ) ) = B ) | 
						
							| 14 | 13 | 3adant3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) ( A ( +g ` M ) B ) ) = B ) | 
						
							| 15 | 9 12 14 | 3netr4d |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) | 
						
							| 16 | 4 15 | syl |  |-  ( ( # ` S ) = 2 -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) | 
						
							| 17 | 2 | eqcomi |  |-  S = ( Base ` M ) | 
						
							| 18 | 17 10 | isnsgrp |  |-  ( ( A e. S /\ A e. S /\ B e. S ) -> ( ( ( A ( +g ` M ) A ) ( +g ` M ) B ) =/= ( A ( +g ` M ) ( A ( +g ` M ) B ) ) -> M e/ Smgrp ) ) | 
						
							| 19 | 8 16 18 | sylc |  |-  ( ( # ` S ) = 2 -> M e/ Smgrp ) |