| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s |  |-  S = { A , B } | 
						
							| 2 |  | mgm2nsgrp.b |  |-  ( Base ` M ) = S | 
						
							| 3 |  | mgm2nsgrp.o |  |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) | 
						
							| 4 |  | mgm2nsgrp.p |  |-  .o. = ( +g ` M ) | 
						
							| 5 |  | prid1g |  |-  ( A e. V -> A e. { A , B } ) | 
						
							| 6 | 5 1 | eleqtrrdi |  |-  ( A e. V -> A e. S ) | 
						
							| 7 |  | prid2g |  |-  ( B e. W -> B e. { A , B } ) | 
						
							| 8 | 7 1 | eleqtrrdi |  |-  ( B e. W -> B e. S ) | 
						
							| 9 | 4 3 | eqtri |  |-  .o. = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) | 
						
							| 10 | 9 | a1i |  |-  ( ( A e. S /\ B e. S ) -> .o. = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) ) | 
						
							| 11 |  | ifeq1 |  |-  ( B = A -> if ( ( x = A /\ y = A ) , B , A ) = if ( ( x = A /\ y = A ) , A , A ) ) | 
						
							| 12 |  | ifid |  |-  if ( ( x = A /\ y = A ) , A , A ) = A | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( B = A -> if ( ( x = A /\ y = A ) , B , A ) = A ) | 
						
							| 14 | 13 | a1d |  |-  ( B = A -> ( y = B -> if ( ( x = A /\ y = A ) , B , A ) = A ) ) | 
						
							| 15 |  | eqeq1 |  |-  ( y = B -> ( y = A <-> B = A ) ) | 
						
							| 16 | 15 | bicomd |  |-  ( y = B -> ( B = A <-> y = A ) ) | 
						
							| 17 | 16 | notbid |  |-  ( y = B -> ( -. B = A <-> -. y = A ) ) | 
						
							| 18 | 17 | biimpac |  |-  ( ( -. B = A /\ y = B ) -> -. y = A ) | 
						
							| 19 | 18 | intnand |  |-  ( ( -. B = A /\ y = B ) -> -. ( x = A /\ y = A ) ) | 
						
							| 20 | 19 | iffalsed |  |-  ( ( -. B = A /\ y = B ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) | 
						
							| 21 | 20 | ex |  |-  ( -. B = A -> ( y = B -> if ( ( x = A /\ y = A ) , B , A ) = A ) ) | 
						
							| 22 | 14 21 | pm2.61i |  |-  ( y = B -> if ( ( x = A /\ y = A ) , B , A ) = A ) | 
						
							| 23 | 22 | ad2antll |  |-  ( ( ( A e. S /\ B e. S ) /\ ( x = ( A .o. A ) /\ y = B ) ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) | 
						
							| 24 |  | iftrue |  |-  ( ( x = A /\ y = A ) -> if ( ( x = A /\ y = A ) , B , A ) = B ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ( A e. S /\ B e. S ) /\ ( x = A /\ y = A ) ) -> if ( ( x = A /\ y = A ) , B , A ) = B ) | 
						
							| 26 |  | simpl |  |-  ( ( A e. S /\ B e. S ) -> A e. S ) | 
						
							| 27 |  | simpr |  |-  ( ( A e. S /\ B e. S ) -> B e. S ) | 
						
							| 28 | 10 25 26 26 27 | ovmpod |  |-  ( ( A e. S /\ B e. S ) -> ( A .o. A ) = B ) | 
						
							| 29 | 28 27 | eqeltrd |  |-  ( ( A e. S /\ B e. S ) -> ( A .o. A ) e. S ) | 
						
							| 30 | 10 23 29 27 26 | ovmpod |  |-  ( ( A e. S /\ B e. S ) -> ( ( A .o. A ) .o. B ) = A ) | 
						
							| 31 | 6 8 30 | syl2an |  |-  ( ( A e. V /\ B e. W ) -> ( ( A .o. A ) .o. B ) = A ) |