| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgm2nsgrp.s |
|- S = { A , B } |
| 2 |
|
mgm2nsgrp.b |
|- ( Base ` M ) = S |
| 3 |
|
mgm2nsgrp.o |
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) |
| 4 |
|
mgm2nsgrp.p |
|- .o. = ( +g ` M ) |
| 5 |
|
prid1g |
|- ( A e. V -> A e. { A , B } ) |
| 6 |
5 1
|
eleqtrrdi |
|- ( A e. V -> A e. S ) |
| 7 |
|
prid2g |
|- ( B e. W -> B e. { A , B } ) |
| 8 |
7 1
|
eleqtrrdi |
|- ( B e. W -> B e. S ) |
| 9 |
4 3
|
eqtri |
|- .o. = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) |
| 10 |
9
|
a1i |
|- ( ( A e. S /\ B e. S ) -> .o. = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) ) |
| 11 |
|
ifeq1 |
|- ( B = A -> if ( ( x = A /\ y = A ) , B , A ) = if ( ( x = A /\ y = A ) , A , A ) ) |
| 12 |
|
ifid |
|- if ( ( x = A /\ y = A ) , A , A ) = A |
| 13 |
11 12
|
eqtrdi |
|- ( B = A -> if ( ( x = A /\ y = A ) , B , A ) = A ) |
| 14 |
13
|
a1d |
|- ( B = A -> ( y = B -> if ( ( x = A /\ y = A ) , B , A ) = A ) ) |
| 15 |
|
eqeq1 |
|- ( y = B -> ( y = A <-> B = A ) ) |
| 16 |
15
|
bicomd |
|- ( y = B -> ( B = A <-> y = A ) ) |
| 17 |
16
|
notbid |
|- ( y = B -> ( -. B = A <-> -. y = A ) ) |
| 18 |
17
|
biimpac |
|- ( ( -. B = A /\ y = B ) -> -. y = A ) |
| 19 |
18
|
intnand |
|- ( ( -. B = A /\ y = B ) -> -. ( x = A /\ y = A ) ) |
| 20 |
19
|
iffalsed |
|- ( ( -. B = A /\ y = B ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) |
| 21 |
20
|
ex |
|- ( -. B = A -> ( y = B -> if ( ( x = A /\ y = A ) , B , A ) = A ) ) |
| 22 |
14 21
|
pm2.61i |
|- ( y = B -> if ( ( x = A /\ y = A ) , B , A ) = A ) |
| 23 |
22
|
ad2antll |
|- ( ( ( A e. S /\ B e. S ) /\ ( x = ( A .o. A ) /\ y = B ) ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) |
| 24 |
|
iftrue |
|- ( ( x = A /\ y = A ) -> if ( ( x = A /\ y = A ) , B , A ) = B ) |
| 25 |
24
|
adantl |
|- ( ( ( A e. S /\ B e. S ) /\ ( x = A /\ y = A ) ) -> if ( ( x = A /\ y = A ) , B , A ) = B ) |
| 26 |
|
simpl |
|- ( ( A e. S /\ B e. S ) -> A e. S ) |
| 27 |
|
simpr |
|- ( ( A e. S /\ B e. S ) -> B e. S ) |
| 28 |
10 25 26 26 27
|
ovmpod |
|- ( ( A e. S /\ B e. S ) -> ( A .o. A ) = B ) |
| 29 |
28 27
|
eqeltrd |
|- ( ( A e. S /\ B e. S ) -> ( A .o. A ) e. S ) |
| 30 |
10 23 29 27 26
|
ovmpod |
|- ( ( A e. S /\ B e. S ) -> ( ( A .o. A ) .o. B ) = A ) |
| 31 |
6 8 30
|
syl2an |
|- ( ( A e. V /\ B e. W ) -> ( ( A .o. A ) .o. B ) = A ) |