| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s |  |-  S = { A , B } | 
						
							| 2 |  | mgm2nsgrp.b |  |-  ( Base ` M ) = S | 
						
							| 3 |  | mgm2nsgrp.o |  |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) | 
						
							| 4 | 1 | hashprdifel |  |-  ( ( # ` S ) = 2 -> ( A e. S /\ B e. S /\ A =/= B ) ) | 
						
							| 5 | 1 2 3 | mgm2nsgrplem1 |  |-  ( ( A e. S /\ B e. S ) -> M e. Mgm ) | 
						
							| 6 | 5 | 3adant3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> M e. Mgm ) | 
						
							| 7 | 4 6 | syl |  |-  ( ( # ` S ) = 2 -> M e. Mgm ) | 
						
							| 8 | 1 2 3 | mgm2nsgrplem4 |  |-  ( ( # ` S ) = 2 -> M e/ Smgrp ) | 
						
							| 9 | 7 8 | jca |  |-  ( ( # ` S ) = 2 -> ( M e. Mgm /\ M e/ Smgrp ) ) |