Step |
Hyp |
Ref |
Expression |
1 |
|
mgm2nsgrp.s |
|- S = { A , B } |
2 |
|
mgm2nsgrp.b |
|- ( Base ` M ) = S |
3 |
|
mgm2nsgrp.o |
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) |
4 |
1
|
hashprdifel |
|- ( ( # ` S ) = 2 -> ( A e. S /\ B e. S /\ A =/= B ) ) |
5 |
1 2 3
|
mgm2nsgrplem1 |
|- ( ( A e. S /\ B e. S ) -> M e. Mgm ) |
6 |
5
|
3adant3 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> M e. Mgm ) |
7 |
4 6
|
syl |
|- ( ( # ` S ) = 2 -> M e. Mgm ) |
8 |
1 2 3
|
mgm2nsgrplem4 |
|- ( ( # ` S ) = 2 -> M e/ Smgrp ) |
9 |
7 8
|
jca |
|- ( ( # ` S ) = 2 -> ( M e. Mgm /\ M e/ Smgrp ) ) |