Metamath Proof Explorer


Theorem mgm2nsgrp

Description: A small magma (with two elements) which is not a semigroup. (Contributed by AV, 28-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s
|- S = { A , B }
mgm2nsgrp.b
|- ( Base ` M ) = S
mgm2nsgrp.o
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) )
Assertion mgm2nsgrp
|- ( ( # ` S ) = 2 -> ( M e. Mgm /\ M e/ Smgrp ) )

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s
 |-  S = { A , B }
2 mgm2nsgrp.b
 |-  ( Base ` M ) = S
3 mgm2nsgrp.o
 |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) )
4 1 hashprdifel
 |-  ( ( # ` S ) = 2 -> ( A e. S /\ B e. S /\ A =/= B ) )
5 1 2 3 mgm2nsgrplem1
 |-  ( ( A e. S /\ B e. S ) -> M e. Mgm )
6 5 3adant3
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> M e. Mgm )
7 4 6 syl
 |-  ( ( # ` S ) = 2 -> M e. Mgm )
8 1 2 3 mgm2nsgrplem4
 |-  ( ( # ` S ) = 2 -> M e/ Smgrp )
9 7 8 jca
 |-  ( ( # ` S ) = 2 -> ( M e. Mgm /\ M e/ Smgrp ) )