Metamath Proof Explorer


Theorem mgm2nsgrp

Description: A small magma (with two elements) which is not a semigroup. (Contributed by AV, 28-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S = A B
mgm2nsgrp.b Base M = S
mgm2nsgrp.o + M = x S , y S if x = A y = A B A
Assertion mgm2nsgrp Could not format assertion : No typesetting found for |- ( ( # ` S ) = 2 -> ( M e. Mgm /\ M e/ Smgrp ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S = A B
2 mgm2nsgrp.b Base M = S
3 mgm2nsgrp.o + M = x S , y S if x = A y = A B A
4 1 hashprdifel S = 2 A S B S A B
5 1 2 3 mgm2nsgrplem1 A S B S M Mgm
6 5 3adant3 A S B S A B M Mgm
7 4 6 syl S = 2 M Mgm
8 1 2 3 mgm2nsgrplem4 Could not format ( ( # ` S ) = 2 -> M e/ Smgrp ) : No typesetting found for |- ( ( # ` S ) = 2 -> M e/ Smgrp ) with typecode |-
9 7 8 jca Could not format ( ( # ` S ) = 2 -> ( M e. Mgm /\ M e/ Smgrp ) ) : No typesetting found for |- ( ( # ` S ) = 2 -> ( M e. Mgm /\ M e/ Smgrp ) ) with typecode |-