Metamath Proof Explorer


Theorem mgm2nsgrp

Description: A small magma (with two elements) which is not a semigroup. (Contributed by AV, 28-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S = A B
mgm2nsgrp.b Base M = S
mgm2nsgrp.o + M = x S , y S if x = A y = A B A
Assertion mgm2nsgrp S = 2 M Mgm M Smgrp

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S = A B
2 mgm2nsgrp.b Base M = S
3 mgm2nsgrp.o + M = x S , y S if x = A y = A B A
4 1 hashprdifel S = 2 A S B S A B
5 1 2 3 mgm2nsgrplem1 A S B S M Mgm
6 5 3adant3 A S B S A B M Mgm
7 4 6 syl S = 2 M Mgm
8 1 2 3 mgm2nsgrplem4 S = 2 M Smgrp
9 7 8 jca S = 2 M Mgm M Smgrp