Step |
Hyp |
Ref |
Expression |
1 |
|
mgm2nsgrp.s |
⊢ 𝑆 = { 𝐴 , 𝐵 } |
2 |
|
mgm2nsgrp.b |
⊢ ( Base ‘ 𝑀 ) = 𝑆 |
3 |
|
mgm2nsgrp.o |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐵 , 𝐴 ) ) |
4 |
|
mgm2nsgrp.p |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
5 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
6 |
5 1
|
eleqtrrdi |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑆 ) |
7 |
|
prid2g |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
8 |
7 1
|
eleqtrrdi |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑆 ) |
9 |
4 3
|
eqtri |
⊢ ⚬ = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐵 , 𝐴 ) ) |
10 |
9
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ⚬ = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐵 , 𝐴 ) ) ) |
11 |
|
ifeq1 |
⊢ ( 𝐵 = 𝐴 → if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐵 , 𝐴 ) = if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐴 , 𝐴 ) ) |
12 |
|
ifid |
⊢ if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐴 , 𝐴 ) = 𝐴 |
13 |
11 12
|
eqtrdi |
⊢ ( 𝐵 = 𝐴 → if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐵 , 𝐴 ) = 𝐴 ) |
14 |
13
|
a1d |
⊢ ( 𝐵 = 𝐴 → ( 𝑦 = 𝐵 → if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐵 , 𝐴 ) = 𝐴 ) ) |
15 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 = 𝐴 ↔ 𝐵 = 𝐴 ) ) |
16 |
15
|
bicomd |
⊢ ( 𝑦 = 𝐵 → ( 𝐵 = 𝐴 ↔ 𝑦 = 𝐴 ) ) |
17 |
16
|
notbid |
⊢ ( 𝑦 = 𝐵 → ( ¬ 𝐵 = 𝐴 ↔ ¬ 𝑦 = 𝐴 ) ) |
18 |
17
|
biimpac |
⊢ ( ( ¬ 𝐵 = 𝐴 ∧ 𝑦 = 𝐵 ) → ¬ 𝑦 = 𝐴 ) |
19 |
18
|
intnand |
⊢ ( ( ¬ 𝐵 = 𝐴 ∧ 𝑦 = 𝐵 ) → ¬ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) |
20 |
19
|
iffalsed |
⊢ ( ( ¬ 𝐵 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐵 , 𝐴 ) = 𝐴 ) |
21 |
20
|
ex |
⊢ ( ¬ 𝐵 = 𝐴 → ( 𝑦 = 𝐵 → if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐵 , 𝐴 ) = 𝐴 ) ) |
22 |
14 21
|
pm2.61i |
⊢ ( 𝑦 = 𝐵 → if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐵 , 𝐴 ) = 𝐴 ) |
23 |
22
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝑥 = ( 𝐴 ⚬ 𝐴 ) ∧ 𝑦 = 𝐵 ) ) → if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐵 , 𝐴 ) = 𝐴 ) |
24 |
|
iftrue |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) → if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐵 , 𝐴 ) = 𝐵 ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) → if ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) , 𝐵 , 𝐴 ) = 𝐵 ) |
26 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
27 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → 𝐵 ∈ 𝑆 ) |
28 |
10 25 26 26 27
|
ovmpod |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ⚬ 𝐴 ) = 𝐵 ) |
29 |
28 27
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 ⚬ 𝐴 ) ∈ 𝑆 ) |
30 |
10 23 29 27 26
|
ovmpod |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 ⚬ 𝐴 ) ⚬ 𝐵 ) = 𝐴 ) |
31 |
6 8 30
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ⚬ 𝐴 ) ⚬ 𝐵 ) = 𝐴 ) |