Step |
Hyp |
Ref |
Expression |
1 |
|
mgm2nsgrp.s |
|- S = { A , B } |
2 |
|
mgm2nsgrp.b |
|- ( Base ` M ) = S |
3 |
|
mgm2nsgrp.o |
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) |
4 |
|
mgm2nsgrp.p |
|- .o. = ( +g ` M ) |
5 |
|
prid1g |
|- ( A e. V -> A e. { A , B } ) |
6 |
5 1
|
eleqtrrdi |
|- ( A e. V -> A e. S ) |
7 |
|
prid2g |
|- ( B e. W -> B e. { A , B } ) |
8 |
7 1
|
eleqtrrdi |
|- ( B e. W -> B e. S ) |
9 |
4 3
|
eqtri |
|- .o. = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) |
10 |
9
|
a1i |
|- ( ( A e. S /\ B e. S ) -> .o. = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) ) |
11 |
|
simprl |
|- ( ( ( A e. S /\ B e. S ) /\ ( x = A /\ y = ( A .o. B ) ) ) -> x = A ) |
12 |
|
simpr |
|- ( ( x = A /\ y = ( A .o. B ) ) -> y = ( A .o. B ) ) |
13 |
|
ifeq1 |
|- ( B = A -> if ( ( x = A /\ y = A ) , B , A ) = if ( ( x = A /\ y = A ) , A , A ) ) |
14 |
|
ifid |
|- if ( ( x = A /\ y = A ) , A , A ) = A |
15 |
13 14
|
eqtrdi |
|- ( B = A -> if ( ( x = A /\ y = A ) , B , A ) = A ) |
16 |
15
|
a1d |
|- ( B = A -> ( ( x = A /\ y = B ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) ) |
17 |
|
eqeq1 |
|- ( y = B -> ( y = A <-> B = A ) ) |
18 |
17
|
biimpcd |
|- ( y = A -> ( y = B -> B = A ) ) |
19 |
18
|
adantl |
|- ( ( x = A /\ y = A ) -> ( y = B -> B = A ) ) |
20 |
19
|
com12 |
|- ( y = B -> ( ( x = A /\ y = A ) -> B = A ) ) |
21 |
20
|
adantl |
|- ( ( x = A /\ y = B ) -> ( ( x = A /\ y = A ) -> B = A ) ) |
22 |
21
|
con3d |
|- ( ( x = A /\ y = B ) -> ( -. B = A -> -. ( x = A /\ y = A ) ) ) |
23 |
22
|
impcom |
|- ( ( -. B = A /\ ( x = A /\ y = B ) ) -> -. ( x = A /\ y = A ) ) |
24 |
23
|
iffalsed |
|- ( ( -. B = A /\ ( x = A /\ y = B ) ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) |
25 |
24
|
ex |
|- ( -. B = A -> ( ( x = A /\ y = B ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) ) |
26 |
16 25
|
pm2.61i |
|- ( ( x = A /\ y = B ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) |
27 |
26
|
adantl |
|- ( ( ( A e. S /\ B e. S ) /\ ( x = A /\ y = B ) ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) |
28 |
|
simpl |
|- ( ( A e. S /\ B e. S ) -> A e. S ) |
29 |
|
simpr |
|- ( ( A e. S /\ B e. S ) -> B e. S ) |
30 |
10 27 28 29 28
|
ovmpod |
|- ( ( A e. S /\ B e. S ) -> ( A .o. B ) = A ) |
31 |
12 30
|
sylan9eqr |
|- ( ( ( A e. S /\ B e. S ) /\ ( x = A /\ y = ( A .o. B ) ) ) -> y = A ) |
32 |
11 31
|
jca |
|- ( ( ( A e. S /\ B e. S ) /\ ( x = A /\ y = ( A .o. B ) ) ) -> ( x = A /\ y = A ) ) |
33 |
32
|
iftrued |
|- ( ( ( A e. S /\ B e. S ) /\ ( x = A /\ y = ( A .o. B ) ) ) -> if ( ( x = A /\ y = A ) , B , A ) = B ) |
34 |
30 28
|
eqeltrd |
|- ( ( A e. S /\ B e. S ) -> ( A .o. B ) e. S ) |
35 |
10 33 28 34 29
|
ovmpod |
|- ( ( A e. S /\ B e. S ) -> ( A .o. ( A .o. B ) ) = B ) |
36 |
6 8 35
|
syl2an |
|- ( ( A e. V /\ B e. W ) -> ( A .o. ( A .o. B ) ) = B ) |