| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s |  |-  S = { A , B } | 
						
							| 2 |  | mgm2nsgrp.b |  |-  ( Base ` M ) = S | 
						
							| 3 |  | mgm2nsgrp.o |  |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) | 
						
							| 4 |  | mgm2nsgrp.p |  |-  .o. = ( +g ` M ) | 
						
							| 5 |  | prid1g |  |-  ( A e. V -> A e. { A , B } ) | 
						
							| 6 | 5 1 | eleqtrrdi |  |-  ( A e. V -> A e. S ) | 
						
							| 7 |  | prid2g |  |-  ( B e. W -> B e. { A , B } ) | 
						
							| 8 | 7 1 | eleqtrrdi |  |-  ( B e. W -> B e. S ) | 
						
							| 9 | 4 3 | eqtri |  |-  .o. = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) | 
						
							| 10 | 9 | a1i |  |-  ( ( A e. S /\ B e. S ) -> .o. = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) ) | 
						
							| 11 |  | simprl |  |-  ( ( ( A e. S /\ B e. S ) /\ ( x = A /\ y = ( A .o. B ) ) ) -> x = A ) | 
						
							| 12 |  | simpr |  |-  ( ( x = A /\ y = ( A .o. B ) ) -> y = ( A .o. B ) ) | 
						
							| 13 |  | ifeq1 |  |-  ( B = A -> if ( ( x = A /\ y = A ) , B , A ) = if ( ( x = A /\ y = A ) , A , A ) ) | 
						
							| 14 |  | ifid |  |-  if ( ( x = A /\ y = A ) , A , A ) = A | 
						
							| 15 | 13 14 | eqtrdi |  |-  ( B = A -> if ( ( x = A /\ y = A ) , B , A ) = A ) | 
						
							| 16 | 15 | a1d |  |-  ( B = A -> ( ( x = A /\ y = B ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) ) | 
						
							| 17 |  | eqeq1 |  |-  ( y = B -> ( y = A <-> B = A ) ) | 
						
							| 18 | 17 | biimpcd |  |-  ( y = A -> ( y = B -> B = A ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( x = A /\ y = A ) -> ( y = B -> B = A ) ) | 
						
							| 20 | 19 | com12 |  |-  ( y = B -> ( ( x = A /\ y = A ) -> B = A ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( x = A /\ y = B ) -> ( ( x = A /\ y = A ) -> B = A ) ) | 
						
							| 22 | 21 | con3d |  |-  ( ( x = A /\ y = B ) -> ( -. B = A -> -. ( x = A /\ y = A ) ) ) | 
						
							| 23 | 22 | impcom |  |-  ( ( -. B = A /\ ( x = A /\ y = B ) ) -> -. ( x = A /\ y = A ) ) | 
						
							| 24 | 23 | iffalsed |  |-  ( ( -. B = A /\ ( x = A /\ y = B ) ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) | 
						
							| 25 | 24 | ex |  |-  ( -. B = A -> ( ( x = A /\ y = B ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) ) | 
						
							| 26 | 16 25 | pm2.61i |  |-  ( ( x = A /\ y = B ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( A e. S /\ B e. S ) /\ ( x = A /\ y = B ) ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) | 
						
							| 28 |  | simpl |  |-  ( ( A e. S /\ B e. S ) -> A e. S ) | 
						
							| 29 |  | simpr |  |-  ( ( A e. S /\ B e. S ) -> B e. S ) | 
						
							| 30 | 10 27 28 29 28 | ovmpod |  |-  ( ( A e. S /\ B e. S ) -> ( A .o. B ) = A ) | 
						
							| 31 | 12 30 | sylan9eqr |  |-  ( ( ( A e. S /\ B e. S ) /\ ( x = A /\ y = ( A .o. B ) ) ) -> y = A ) | 
						
							| 32 | 11 31 | jca |  |-  ( ( ( A e. S /\ B e. S ) /\ ( x = A /\ y = ( A .o. B ) ) ) -> ( x = A /\ y = A ) ) | 
						
							| 33 | 32 | iftrued |  |-  ( ( ( A e. S /\ B e. S ) /\ ( x = A /\ y = ( A .o. B ) ) ) -> if ( ( x = A /\ y = A ) , B , A ) = B ) | 
						
							| 34 | 30 28 | eqeltrd |  |-  ( ( A e. S /\ B e. S ) -> ( A .o. B ) e. S ) | 
						
							| 35 | 10 33 28 34 29 | ovmpod |  |-  ( ( A e. S /\ B e. S ) -> ( A .o. ( A .o. B ) ) = B ) | 
						
							| 36 | 6 8 35 | syl2an |  |-  ( ( A e. V /\ B e. W ) -> ( A .o. ( A .o. B ) ) = B ) |