| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s | ⊢ 𝑆  =  { 𝐴 ,  𝐵 } | 
						
							| 2 |  | mgm2nsgrp.b | ⊢ ( Base ‘ 𝑀 )  =  𝑆 | 
						
							| 3 |  | mgm2nsgrp.o | ⊢ ( +g ‘ 𝑀 )  =  ( 𝑥  ∈  𝑆 ,  𝑦  ∈  𝑆  ↦  if ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐴 ) ,  𝐵 ,  𝐴 ) ) | 
						
							| 4 | 1 | hashprdifel | ⊢ ( ( ♯ ‘ 𝑆 )  =  2  →  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 ) ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  𝑆 ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  𝑆 ) | 
						
							| 7 | 5 5 6 | 3jca | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴  ∈  𝑆  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) ) | 
						
							| 8 | 4 7 | syl | ⊢ ( ( ♯ ‘ 𝑆 )  =  2  →  ( 𝐴  ∈  𝑆  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  𝐴  ≠  𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 11 | 1 2 3 10 | mgm2nsgrplem2 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  𝐴 ) | 
						
							| 12 | 11 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  =  𝐴 ) | 
						
							| 13 | 1 2 3 10 | mgm2nsgrplem3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) )  =  𝐵 ) | 
						
							| 14 | 13 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) )  =  𝐵 ) | 
						
							| 15 | 9 12 14 | 3netr4d | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐴  ≠  𝐵 )  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  ≠  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 16 | 4 15 | syl | ⊢ ( ( ♯ ‘ 𝑆 )  =  2  →  ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  ≠  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) ) ) | 
						
							| 17 | 2 | eqcomi | ⊢ 𝑆  =  ( Base ‘ 𝑀 ) | 
						
							| 18 | 17 10 | isnsgrp | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →  ( ( ( 𝐴 ( +g ‘ 𝑀 ) 𝐴 ) ( +g ‘ 𝑀 ) 𝐵 )  ≠  ( 𝐴 ( +g ‘ 𝑀 ) ( 𝐴 ( +g ‘ 𝑀 ) 𝐵 ) )  →  𝑀  ∉  Smgrp ) ) | 
						
							| 19 | 8 16 18 | sylc | ⊢ ( ( ♯ ‘ 𝑆 )  =  2  →  𝑀  ∉  Smgrp ) |