Metamath Proof Explorer


Theorem sgrp2nmnd

Description: A small semigroup (with two elements) which is not a monoid. (Contributed by AV, 26-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s
|- S = { A , B }
mgm2nsgrp.b
|- ( Base ` M ) = S
sgrp2nmnd.o
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) )
Assertion sgrp2nmnd
|- ( ( # ` S ) = 2 -> ( M e. Smgrp /\ M e/ Mnd ) )

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s
 |-  S = { A , B }
2 mgm2nsgrp.b
 |-  ( Base ` M ) = S
3 sgrp2nmnd.o
 |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) )
4 1 2 3 sgrp2nmndlem4
 |-  ( ( # ` S ) = 2 -> M e. Smgrp )
5 1 2 3 sgrp2nmndlem5
 |-  ( ( # ` S ) = 2 -> M e/ Mnd )
6 4 5 jca
 |-  ( ( # ` S ) = 2 -> ( M e. Smgrp /\ M e/ Mnd ) )