| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s |  |-  S = { A , B } | 
						
							| 2 |  | mgm2nsgrp.b |  |-  ( Base ` M ) = S | 
						
							| 3 |  | sgrp2nmnd.o |  |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) ) | 
						
							| 4 | 1 | hashprdifel |  |-  ( ( # ` S ) = 2 -> ( A e. S /\ B e. S /\ A =/= B ) ) | 
						
							| 5 |  | 3simpa |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A e. S /\ B e. S ) ) | 
						
							| 6 | 1 2 3 | sgrp2nmndlem1 |  |-  ( ( A e. S /\ B e. S ) -> M e. Mgm ) | 
						
							| 7 | 4 5 6 | 3syl |  |-  ( ( # ` S ) = 2 -> M e. Mgm ) | 
						
							| 8 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 9 | 1 2 3 8 | sgrp2nmndlem2 |  |-  ( ( A e. S /\ A e. S ) -> ( A ( +g ` M ) A ) = A ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( A e. S /\ A e. S ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) A ) = ( A ( +g ` M ) A ) ) | 
						
							| 11 | 9 | oveq2d |  |-  ( ( A e. S /\ A e. S ) -> ( A ( +g ` M ) ( A ( +g ` M ) A ) ) = ( A ( +g ` M ) A ) ) | 
						
							| 12 | 10 11 | eqtr4d |  |-  ( ( A e. S /\ A e. S ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) A ) = ( A ( +g ` M ) ( A ( +g ` M ) A ) ) ) | 
						
							| 13 | 12 | anidms |  |-  ( A e. S -> ( ( A ( +g ` M ) A ) ( +g ` M ) A ) = ( A ( +g ` M ) ( A ( +g ` M ) A ) ) ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) A ) = ( A ( +g ` M ) ( A ( +g ` M ) A ) ) ) | 
						
							| 15 | 9 | anidms |  |-  ( A e. S -> ( A ( +g ` M ) A ) = A ) | 
						
							| 16 | 15 | adantr |  |-  ( ( A e. S /\ B e. S ) -> ( A ( +g ` M ) A ) = A ) | 
						
							| 17 | 16 | oveq1d |  |-  ( ( A e. S /\ B e. S ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = ( A ( +g ` M ) B ) ) | 
						
							| 18 | 1 2 3 8 | sgrp2nmndlem2 |  |-  ( ( A e. S /\ B e. S ) -> ( A ( +g ` M ) B ) = A ) | 
						
							| 19 | 18 | oveq2d |  |-  ( ( A e. S /\ B e. S ) -> ( A ( +g ` M ) ( A ( +g ` M ) B ) ) = ( A ( +g ` M ) A ) ) | 
						
							| 20 | 16 19 18 | 3eqtr4rd |  |-  ( ( A e. S /\ B e. S ) -> ( A ( +g ` M ) B ) = ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) | 
						
							| 21 | 17 20 | eqtrd |  |-  ( ( A e. S /\ B e. S ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) | 
						
							| 22 | 21 | 3adant3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) | 
						
							| 23 | 14 22 | jca |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( ( A ( +g ` M ) A ) ( +g ` M ) A ) = ( A ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) ) | 
						
							| 24 | 18 | 3adant3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) B ) = A ) | 
						
							| 25 | 1 2 3 8 | sgrp2nmndlem3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) A ) = B ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) ( B ( +g ` M ) A ) ) = ( A ( +g ` M ) B ) ) | 
						
							| 27 | 24 | oveq1d |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) B ) ( +g ` M ) A ) = ( A ( +g ` M ) A ) ) | 
						
							| 28 | 15 | 3ad2ant1 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) A ) = A ) | 
						
							| 29 | 27 28 | eqtrd |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) B ) ( +g ` M ) A ) = A ) | 
						
							| 30 | 24 26 29 | 3eqtr4rd |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) B ) ( +g ` M ) A ) = ( A ( +g ` M ) ( B ( +g ` M ) A ) ) ) | 
						
							| 31 |  | simp2 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> B e. S ) | 
						
							| 32 | 1 2 3 8 | sgrp2nmndlem3 |  |-  ( ( B e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) B ) = B ) | 
						
							| 33 | 31 32 | syld3an1 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) B ) = B ) | 
						
							| 34 | 33 | oveq2d |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A ( +g ` M ) ( B ( +g ` M ) B ) ) = ( A ( +g ` M ) B ) ) | 
						
							| 35 | 18 | oveq1d |  |-  ( ( A e. S /\ B e. S ) -> ( ( A ( +g ` M ) B ) ( +g ` M ) B ) = ( A ( +g ` M ) B ) ) | 
						
							| 36 | 35 18 | eqtrd |  |-  ( ( A e. S /\ B e. S ) -> ( ( A ( +g ` M ) B ) ( +g ` M ) B ) = A ) | 
						
							| 37 | 36 | 3adant3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) B ) ( +g ` M ) B ) = A ) | 
						
							| 38 | 24 34 37 | 3eqtr4rd |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( A ( +g ` M ) B ) ( +g ` M ) B ) = ( A ( +g ` M ) ( B ( +g ` M ) B ) ) ) | 
						
							| 39 | 23 30 38 | jca32 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( ( ( A ( +g ` M ) A ) ( +g ` M ) A ) = ( A ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) /\ ( ( ( A ( +g ` M ) B ) ( +g ` M ) A ) = ( A ( +g ` M ) ( B ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) B ) ( +g ` M ) B ) = ( A ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) ) | 
						
							| 40 | 25 | oveq1d |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) A ) ( +g ` M ) A ) = ( B ( +g ` M ) A ) ) | 
						
							| 41 | 28 | oveq2d |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) ( A ( +g ` M ) A ) ) = ( B ( +g ` M ) A ) ) | 
						
							| 42 | 40 41 | eqtr4d |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) A ) ( +g ` M ) A ) = ( B ( +g ` M ) ( A ( +g ` M ) A ) ) ) | 
						
							| 43 | 24 | oveq2d |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) ( A ( +g ` M ) B ) ) = ( B ( +g ` M ) A ) ) | 
						
							| 44 | 25 | oveq1d |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) A ) ( +g ` M ) B ) = ( B ( +g ` M ) B ) ) | 
						
							| 45 | 44 33 | eqtrd |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) A ) ( +g ` M ) B ) = B ) | 
						
							| 46 | 25 43 45 | 3eqtr4rd |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) A ) ( +g ` M ) B ) = ( B ( +g ` M ) ( A ( +g ` M ) B ) ) ) | 
						
							| 47 | 42 46 | jca |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( ( B ( +g ` M ) A ) ( +g ` M ) A ) = ( B ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) A ) ( +g ` M ) B ) = ( B ( +g ` M ) ( A ( +g ` M ) B ) ) ) ) | 
						
							| 48 | 25 | oveq2d |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) ( B ( +g ` M ) A ) ) = ( B ( +g ` M ) B ) ) | 
						
							| 49 | 33 | oveq1d |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) B ) ( +g ` M ) A ) = ( B ( +g ` M ) A ) ) | 
						
							| 50 | 49 25 | eqtrd |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) B ) ( +g ` M ) A ) = B ) | 
						
							| 51 | 33 48 50 | 3eqtr4rd |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) B ) ( +g ` M ) A ) = ( B ( +g ` M ) ( B ( +g ` M ) A ) ) ) | 
						
							| 52 | 32 | oveq1d |  |-  ( ( B e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) B ) ( +g ` M ) B ) = ( B ( +g ` M ) B ) ) | 
						
							| 53 | 32 | oveq2d |  |-  ( ( B e. S /\ B e. S /\ A =/= B ) -> ( B ( +g ` M ) ( B ( +g ` M ) B ) ) = ( B ( +g ` M ) B ) ) | 
						
							| 54 | 52 53 | eqtr4d |  |-  ( ( B e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) B ) ( +g ` M ) B ) = ( B ( +g ` M ) ( B ( +g ` M ) B ) ) ) | 
						
							| 55 | 31 54 | syld3an1 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( B ( +g ` M ) B ) ( +g ` M ) B ) = ( B ( +g ` M ) ( B ( +g ` M ) B ) ) ) | 
						
							| 56 | 47 51 55 | jca32 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( ( ( ( B ( +g ` M ) A ) ( +g ` M ) A ) = ( B ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) A ) ( +g ` M ) B ) = ( B ( +g ` M ) ( A ( +g ` M ) B ) ) ) /\ ( ( ( B ( +g ` M ) B ) ( +g ` M ) A ) = ( B ( +g ` M ) ( B ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) B ) ( +g ` M ) B ) = ( B ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) ) | 
						
							| 57 |  | oveq1 |  |-  ( a = A -> ( a ( +g ` M ) b ) = ( A ( +g ` M ) b ) ) | 
						
							| 58 | 57 | oveq1d |  |-  ( a = A -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( ( A ( +g ` M ) b ) ( +g ` M ) c ) ) | 
						
							| 59 |  | oveq1 |  |-  ( a = A -> ( a ( +g ` M ) ( b ( +g ` M ) c ) ) = ( A ( +g ` M ) ( b ( +g ` M ) c ) ) ) | 
						
							| 60 | 58 59 | eqeq12d |  |-  ( a = A -> ( ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) <-> ( ( A ( +g ` M ) b ) ( +g ` M ) c ) = ( A ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) | 
						
							| 61 | 60 | 2ralbidv |  |-  ( a = A -> ( A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) <-> A. b e. { A , B } A. c e. { A , B } ( ( A ( +g ` M ) b ) ( +g ` M ) c ) = ( A ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) | 
						
							| 62 |  | oveq1 |  |-  ( a = B -> ( a ( +g ` M ) b ) = ( B ( +g ` M ) b ) ) | 
						
							| 63 | 62 | oveq1d |  |-  ( a = B -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( ( B ( +g ` M ) b ) ( +g ` M ) c ) ) | 
						
							| 64 |  | oveq1 |  |-  ( a = B -> ( a ( +g ` M ) ( b ( +g ` M ) c ) ) = ( B ( +g ` M ) ( b ( +g ` M ) c ) ) ) | 
						
							| 65 | 63 64 | eqeq12d |  |-  ( a = B -> ( ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) <-> ( ( B ( +g ` M ) b ) ( +g ` M ) c ) = ( B ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) | 
						
							| 66 | 65 | 2ralbidv |  |-  ( a = B -> ( A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) <-> A. b e. { A , B } A. c e. { A , B } ( ( B ( +g ` M ) b ) ( +g ` M ) c ) = ( B ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) | 
						
							| 67 | 61 66 | ralprg |  |-  ( ( A e. S /\ B e. S ) -> ( A. a e. { A , B } A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) <-> ( A. b e. { A , B } A. c e. { A , B } ( ( A ( +g ` M ) b ) ( +g ` M ) c ) = ( A ( +g ` M ) ( b ( +g ` M ) c ) ) /\ A. b e. { A , B } A. c e. { A , B } ( ( B ( +g ` M ) b ) ( +g ` M ) c ) = ( B ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) ) | 
						
							| 68 |  | oveq2 |  |-  ( b = A -> ( A ( +g ` M ) b ) = ( A ( +g ` M ) A ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( b = A -> ( ( A ( +g ` M ) b ) ( +g ` M ) c ) = ( ( A ( +g ` M ) A ) ( +g ` M ) c ) ) | 
						
							| 70 |  | oveq1 |  |-  ( b = A -> ( b ( +g ` M ) c ) = ( A ( +g ` M ) c ) ) | 
						
							| 71 | 70 | oveq2d |  |-  ( b = A -> ( A ( +g ` M ) ( b ( +g ` M ) c ) ) = ( A ( +g ` M ) ( A ( +g ` M ) c ) ) ) | 
						
							| 72 | 69 71 | eqeq12d |  |-  ( b = A -> ( ( ( A ( +g ` M ) b ) ( +g ` M ) c ) = ( A ( +g ` M ) ( b ( +g ` M ) c ) ) <-> ( ( A ( +g ` M ) A ) ( +g ` M ) c ) = ( A ( +g ` M ) ( A ( +g ` M ) c ) ) ) ) | 
						
							| 73 | 72 | ralbidv |  |-  ( b = A -> ( A. c e. { A , B } ( ( A ( +g ` M ) b ) ( +g ` M ) c ) = ( A ( +g ` M ) ( b ( +g ` M ) c ) ) <-> A. c e. { A , B } ( ( A ( +g ` M ) A ) ( +g ` M ) c ) = ( A ( +g ` M ) ( A ( +g ` M ) c ) ) ) ) | 
						
							| 74 |  | oveq2 |  |-  ( b = B -> ( A ( +g ` M ) b ) = ( A ( +g ` M ) B ) ) | 
						
							| 75 | 74 | oveq1d |  |-  ( b = B -> ( ( A ( +g ` M ) b ) ( +g ` M ) c ) = ( ( A ( +g ` M ) B ) ( +g ` M ) c ) ) | 
						
							| 76 |  | oveq1 |  |-  ( b = B -> ( b ( +g ` M ) c ) = ( B ( +g ` M ) c ) ) | 
						
							| 77 | 76 | oveq2d |  |-  ( b = B -> ( A ( +g ` M ) ( b ( +g ` M ) c ) ) = ( A ( +g ` M ) ( B ( +g ` M ) c ) ) ) | 
						
							| 78 | 75 77 | eqeq12d |  |-  ( b = B -> ( ( ( A ( +g ` M ) b ) ( +g ` M ) c ) = ( A ( +g ` M ) ( b ( +g ` M ) c ) ) <-> ( ( A ( +g ` M ) B ) ( +g ` M ) c ) = ( A ( +g ` M ) ( B ( +g ` M ) c ) ) ) ) | 
						
							| 79 | 78 | ralbidv |  |-  ( b = B -> ( A. c e. { A , B } ( ( A ( +g ` M ) b ) ( +g ` M ) c ) = ( A ( +g ` M ) ( b ( +g ` M ) c ) ) <-> A. c e. { A , B } ( ( A ( +g ` M ) B ) ( +g ` M ) c ) = ( A ( +g ` M ) ( B ( +g ` M ) c ) ) ) ) | 
						
							| 80 | 73 79 | ralprg |  |-  ( ( A e. S /\ B e. S ) -> ( A. b e. { A , B } A. c e. { A , B } ( ( A ( +g ` M ) b ) ( +g ` M ) c ) = ( A ( +g ` M ) ( b ( +g ` M ) c ) ) <-> ( A. c e. { A , B } ( ( A ( +g ` M ) A ) ( +g ` M ) c ) = ( A ( +g ` M ) ( A ( +g ` M ) c ) ) /\ A. c e. { A , B } ( ( A ( +g ` M ) B ) ( +g ` M ) c ) = ( A ( +g ` M ) ( B ( +g ` M ) c ) ) ) ) ) | 
						
							| 81 |  | oveq2 |  |-  ( b = A -> ( B ( +g ` M ) b ) = ( B ( +g ` M ) A ) ) | 
						
							| 82 | 81 | oveq1d |  |-  ( b = A -> ( ( B ( +g ` M ) b ) ( +g ` M ) c ) = ( ( B ( +g ` M ) A ) ( +g ` M ) c ) ) | 
						
							| 83 | 70 | oveq2d |  |-  ( b = A -> ( B ( +g ` M ) ( b ( +g ` M ) c ) ) = ( B ( +g ` M ) ( A ( +g ` M ) c ) ) ) | 
						
							| 84 | 82 83 | eqeq12d |  |-  ( b = A -> ( ( ( B ( +g ` M ) b ) ( +g ` M ) c ) = ( B ( +g ` M ) ( b ( +g ` M ) c ) ) <-> ( ( B ( +g ` M ) A ) ( +g ` M ) c ) = ( B ( +g ` M ) ( A ( +g ` M ) c ) ) ) ) | 
						
							| 85 | 84 | ralbidv |  |-  ( b = A -> ( A. c e. { A , B } ( ( B ( +g ` M ) b ) ( +g ` M ) c ) = ( B ( +g ` M ) ( b ( +g ` M ) c ) ) <-> A. c e. { A , B } ( ( B ( +g ` M ) A ) ( +g ` M ) c ) = ( B ( +g ` M ) ( A ( +g ` M ) c ) ) ) ) | 
						
							| 86 |  | oveq2 |  |-  ( b = B -> ( B ( +g ` M ) b ) = ( B ( +g ` M ) B ) ) | 
						
							| 87 | 86 | oveq1d |  |-  ( b = B -> ( ( B ( +g ` M ) b ) ( +g ` M ) c ) = ( ( B ( +g ` M ) B ) ( +g ` M ) c ) ) | 
						
							| 88 | 76 | oveq2d |  |-  ( b = B -> ( B ( +g ` M ) ( b ( +g ` M ) c ) ) = ( B ( +g ` M ) ( B ( +g ` M ) c ) ) ) | 
						
							| 89 | 87 88 | eqeq12d |  |-  ( b = B -> ( ( ( B ( +g ` M ) b ) ( +g ` M ) c ) = ( B ( +g ` M ) ( b ( +g ` M ) c ) ) <-> ( ( B ( +g ` M ) B ) ( +g ` M ) c ) = ( B ( +g ` M ) ( B ( +g ` M ) c ) ) ) ) | 
						
							| 90 | 89 | ralbidv |  |-  ( b = B -> ( A. c e. { A , B } ( ( B ( +g ` M ) b ) ( +g ` M ) c ) = ( B ( +g ` M ) ( b ( +g ` M ) c ) ) <-> A. c e. { A , B } ( ( B ( +g ` M ) B ) ( +g ` M ) c ) = ( B ( +g ` M ) ( B ( +g ` M ) c ) ) ) ) | 
						
							| 91 | 85 90 | ralprg |  |-  ( ( A e. S /\ B e. S ) -> ( A. b e. { A , B } A. c e. { A , B } ( ( B ( +g ` M ) b ) ( +g ` M ) c ) = ( B ( +g ` M ) ( b ( +g ` M ) c ) ) <-> ( A. c e. { A , B } ( ( B ( +g ` M ) A ) ( +g ` M ) c ) = ( B ( +g ` M ) ( A ( +g ` M ) c ) ) /\ A. c e. { A , B } ( ( B ( +g ` M ) B ) ( +g ` M ) c ) = ( B ( +g ` M ) ( B ( +g ` M ) c ) ) ) ) ) | 
						
							| 92 | 80 91 | anbi12d |  |-  ( ( A e. S /\ B e. S ) -> ( ( A. b e. { A , B } A. c e. { A , B } ( ( A ( +g ` M ) b ) ( +g ` M ) c ) = ( A ( +g ` M ) ( b ( +g ` M ) c ) ) /\ A. b e. { A , B } A. c e. { A , B } ( ( B ( +g ` M ) b ) ( +g ` M ) c ) = ( B ( +g ` M ) ( b ( +g ` M ) c ) ) ) <-> ( ( A. c e. { A , B } ( ( A ( +g ` M ) A ) ( +g ` M ) c ) = ( A ( +g ` M ) ( A ( +g ` M ) c ) ) /\ A. c e. { A , B } ( ( A ( +g ` M ) B ) ( +g ` M ) c ) = ( A ( +g ` M ) ( B ( +g ` M ) c ) ) ) /\ ( A. c e. { A , B } ( ( B ( +g ` M ) A ) ( +g ` M ) c ) = ( B ( +g ` M ) ( A ( +g ` M ) c ) ) /\ A. c e. { A , B } ( ( B ( +g ` M ) B ) ( +g ` M ) c ) = ( B ( +g ` M ) ( B ( +g ` M ) c ) ) ) ) ) ) | 
						
							| 93 |  | oveq2 |  |-  ( c = A -> ( ( A ( +g ` M ) A ) ( +g ` M ) c ) = ( ( A ( +g ` M ) A ) ( +g ` M ) A ) ) | 
						
							| 94 |  | oveq2 |  |-  ( c = A -> ( A ( +g ` M ) c ) = ( A ( +g ` M ) A ) ) | 
						
							| 95 | 94 | oveq2d |  |-  ( c = A -> ( A ( +g ` M ) ( A ( +g ` M ) c ) ) = ( A ( +g ` M ) ( A ( +g ` M ) A ) ) ) | 
						
							| 96 | 93 95 | eqeq12d |  |-  ( c = A -> ( ( ( A ( +g ` M ) A ) ( +g ` M ) c ) = ( A ( +g ` M ) ( A ( +g ` M ) c ) ) <-> ( ( A ( +g ` M ) A ) ( +g ` M ) A ) = ( A ( +g ` M ) ( A ( +g ` M ) A ) ) ) ) | 
						
							| 97 |  | oveq2 |  |-  ( c = B -> ( ( A ( +g ` M ) A ) ( +g ` M ) c ) = ( ( A ( +g ` M ) A ) ( +g ` M ) B ) ) | 
						
							| 98 |  | oveq2 |  |-  ( c = B -> ( A ( +g ` M ) c ) = ( A ( +g ` M ) B ) ) | 
						
							| 99 | 98 | oveq2d |  |-  ( c = B -> ( A ( +g ` M ) ( A ( +g ` M ) c ) ) = ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) | 
						
							| 100 | 97 99 | eqeq12d |  |-  ( c = B -> ( ( ( A ( +g ` M ) A ) ( +g ` M ) c ) = ( A ( +g ` M ) ( A ( +g ` M ) c ) ) <-> ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) ) | 
						
							| 101 | 96 100 | ralprg |  |-  ( ( A e. S /\ B e. S ) -> ( A. c e. { A , B } ( ( A ( +g ` M ) A ) ( +g ` M ) c ) = ( A ( +g ` M ) ( A ( +g ` M ) c ) ) <-> ( ( ( A ( +g ` M ) A ) ( +g ` M ) A ) = ( A ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) ) ) | 
						
							| 102 |  | oveq2 |  |-  ( c = A -> ( ( A ( +g ` M ) B ) ( +g ` M ) c ) = ( ( A ( +g ` M ) B ) ( +g ` M ) A ) ) | 
						
							| 103 |  | oveq2 |  |-  ( c = A -> ( B ( +g ` M ) c ) = ( B ( +g ` M ) A ) ) | 
						
							| 104 | 103 | oveq2d |  |-  ( c = A -> ( A ( +g ` M ) ( B ( +g ` M ) c ) ) = ( A ( +g ` M ) ( B ( +g ` M ) A ) ) ) | 
						
							| 105 | 102 104 | eqeq12d |  |-  ( c = A -> ( ( ( A ( +g ` M ) B ) ( +g ` M ) c ) = ( A ( +g ` M ) ( B ( +g ` M ) c ) ) <-> ( ( A ( +g ` M ) B ) ( +g ` M ) A ) = ( A ( +g ` M ) ( B ( +g ` M ) A ) ) ) ) | 
						
							| 106 |  | oveq2 |  |-  ( c = B -> ( ( A ( +g ` M ) B ) ( +g ` M ) c ) = ( ( A ( +g ` M ) B ) ( +g ` M ) B ) ) | 
						
							| 107 |  | oveq2 |  |-  ( c = B -> ( B ( +g ` M ) c ) = ( B ( +g ` M ) B ) ) | 
						
							| 108 | 107 | oveq2d |  |-  ( c = B -> ( A ( +g ` M ) ( B ( +g ` M ) c ) ) = ( A ( +g ` M ) ( B ( +g ` M ) B ) ) ) | 
						
							| 109 | 106 108 | eqeq12d |  |-  ( c = B -> ( ( ( A ( +g ` M ) B ) ( +g ` M ) c ) = ( A ( +g ` M ) ( B ( +g ` M ) c ) ) <-> ( ( A ( +g ` M ) B ) ( +g ` M ) B ) = ( A ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) | 
						
							| 110 | 105 109 | ralprg |  |-  ( ( A e. S /\ B e. S ) -> ( A. c e. { A , B } ( ( A ( +g ` M ) B ) ( +g ` M ) c ) = ( A ( +g ` M ) ( B ( +g ` M ) c ) ) <-> ( ( ( A ( +g ` M ) B ) ( +g ` M ) A ) = ( A ( +g ` M ) ( B ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) B ) ( +g ` M ) B ) = ( A ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) ) | 
						
							| 111 | 101 110 | anbi12d |  |-  ( ( A e. S /\ B e. S ) -> ( ( A. c e. { A , B } ( ( A ( +g ` M ) A ) ( +g ` M ) c ) = ( A ( +g ` M ) ( A ( +g ` M ) c ) ) /\ A. c e. { A , B } ( ( A ( +g ` M ) B ) ( +g ` M ) c ) = ( A ( +g ` M ) ( B ( +g ` M ) c ) ) ) <-> ( ( ( ( A ( +g ` M ) A ) ( +g ` M ) A ) = ( A ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) /\ ( ( ( A ( +g ` M ) B ) ( +g ` M ) A ) = ( A ( +g ` M ) ( B ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) B ) ( +g ` M ) B ) = ( A ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) ) ) | 
						
							| 112 |  | oveq2 |  |-  ( c = A -> ( ( B ( +g ` M ) A ) ( +g ` M ) c ) = ( ( B ( +g ` M ) A ) ( +g ` M ) A ) ) | 
						
							| 113 | 94 | oveq2d |  |-  ( c = A -> ( B ( +g ` M ) ( A ( +g ` M ) c ) ) = ( B ( +g ` M ) ( A ( +g ` M ) A ) ) ) | 
						
							| 114 | 112 113 | eqeq12d |  |-  ( c = A -> ( ( ( B ( +g ` M ) A ) ( +g ` M ) c ) = ( B ( +g ` M ) ( A ( +g ` M ) c ) ) <-> ( ( B ( +g ` M ) A ) ( +g ` M ) A ) = ( B ( +g ` M ) ( A ( +g ` M ) A ) ) ) ) | 
						
							| 115 |  | oveq2 |  |-  ( c = B -> ( ( B ( +g ` M ) A ) ( +g ` M ) c ) = ( ( B ( +g ` M ) A ) ( +g ` M ) B ) ) | 
						
							| 116 | 98 | oveq2d |  |-  ( c = B -> ( B ( +g ` M ) ( A ( +g ` M ) c ) ) = ( B ( +g ` M ) ( A ( +g ` M ) B ) ) ) | 
						
							| 117 | 115 116 | eqeq12d |  |-  ( c = B -> ( ( ( B ( +g ` M ) A ) ( +g ` M ) c ) = ( B ( +g ` M ) ( A ( +g ` M ) c ) ) <-> ( ( B ( +g ` M ) A ) ( +g ` M ) B ) = ( B ( +g ` M ) ( A ( +g ` M ) B ) ) ) ) | 
						
							| 118 | 114 117 | ralprg |  |-  ( ( A e. S /\ B e. S ) -> ( A. c e. { A , B } ( ( B ( +g ` M ) A ) ( +g ` M ) c ) = ( B ( +g ` M ) ( A ( +g ` M ) c ) ) <-> ( ( ( B ( +g ` M ) A ) ( +g ` M ) A ) = ( B ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) A ) ( +g ` M ) B ) = ( B ( +g ` M ) ( A ( +g ` M ) B ) ) ) ) ) | 
						
							| 119 |  | oveq2 |  |-  ( c = A -> ( ( B ( +g ` M ) B ) ( +g ` M ) c ) = ( ( B ( +g ` M ) B ) ( +g ` M ) A ) ) | 
						
							| 120 | 103 | oveq2d |  |-  ( c = A -> ( B ( +g ` M ) ( B ( +g ` M ) c ) ) = ( B ( +g ` M ) ( B ( +g ` M ) A ) ) ) | 
						
							| 121 | 119 120 | eqeq12d |  |-  ( c = A -> ( ( ( B ( +g ` M ) B ) ( +g ` M ) c ) = ( B ( +g ` M ) ( B ( +g ` M ) c ) ) <-> ( ( B ( +g ` M ) B ) ( +g ` M ) A ) = ( B ( +g ` M ) ( B ( +g ` M ) A ) ) ) ) | 
						
							| 122 |  | oveq2 |  |-  ( c = B -> ( ( B ( +g ` M ) B ) ( +g ` M ) c ) = ( ( B ( +g ` M ) B ) ( +g ` M ) B ) ) | 
						
							| 123 | 107 | oveq2d |  |-  ( c = B -> ( B ( +g ` M ) ( B ( +g ` M ) c ) ) = ( B ( +g ` M ) ( B ( +g ` M ) B ) ) ) | 
						
							| 124 | 122 123 | eqeq12d |  |-  ( c = B -> ( ( ( B ( +g ` M ) B ) ( +g ` M ) c ) = ( B ( +g ` M ) ( B ( +g ` M ) c ) ) <-> ( ( B ( +g ` M ) B ) ( +g ` M ) B ) = ( B ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) | 
						
							| 125 | 121 124 | ralprg |  |-  ( ( A e. S /\ B e. S ) -> ( A. c e. { A , B } ( ( B ( +g ` M ) B ) ( +g ` M ) c ) = ( B ( +g ` M ) ( B ( +g ` M ) c ) ) <-> ( ( ( B ( +g ` M ) B ) ( +g ` M ) A ) = ( B ( +g ` M ) ( B ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) B ) ( +g ` M ) B ) = ( B ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) ) | 
						
							| 126 | 118 125 | anbi12d |  |-  ( ( A e. S /\ B e. S ) -> ( ( A. c e. { A , B } ( ( B ( +g ` M ) A ) ( +g ` M ) c ) = ( B ( +g ` M ) ( A ( +g ` M ) c ) ) /\ A. c e. { A , B } ( ( B ( +g ` M ) B ) ( +g ` M ) c ) = ( B ( +g ` M ) ( B ( +g ` M ) c ) ) ) <-> ( ( ( ( B ( +g ` M ) A ) ( +g ` M ) A ) = ( B ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) A ) ( +g ` M ) B ) = ( B ( +g ` M ) ( A ( +g ` M ) B ) ) ) /\ ( ( ( B ( +g ` M ) B ) ( +g ` M ) A ) = ( B ( +g ` M ) ( B ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) B ) ( +g ` M ) B ) = ( B ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) ) ) | 
						
							| 127 | 111 126 | anbi12d |  |-  ( ( A e. S /\ B e. S ) -> ( ( ( A. c e. { A , B } ( ( A ( +g ` M ) A ) ( +g ` M ) c ) = ( A ( +g ` M ) ( A ( +g ` M ) c ) ) /\ A. c e. { A , B } ( ( A ( +g ` M ) B ) ( +g ` M ) c ) = ( A ( +g ` M ) ( B ( +g ` M ) c ) ) ) /\ ( A. c e. { A , B } ( ( B ( +g ` M ) A ) ( +g ` M ) c ) = ( B ( +g ` M ) ( A ( +g ` M ) c ) ) /\ A. c e. { A , B } ( ( B ( +g ` M ) B ) ( +g ` M ) c ) = ( B ( +g ` M ) ( B ( +g ` M ) c ) ) ) ) <-> ( ( ( ( ( A ( +g ` M ) A ) ( +g ` M ) A ) = ( A ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) /\ ( ( ( A ( +g ` M ) B ) ( +g ` M ) A ) = ( A ( +g ` M ) ( B ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) B ) ( +g ` M ) B ) = ( A ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) /\ ( ( ( ( B ( +g ` M ) A ) ( +g ` M ) A ) = ( B ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) A ) ( +g ` M ) B ) = ( B ( +g ` M ) ( A ( +g ` M ) B ) ) ) /\ ( ( ( B ( +g ` M ) B ) ( +g ` M ) A ) = ( B ( +g ` M ) ( B ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) B ) ( +g ` M ) B ) = ( B ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) ) ) ) | 
						
							| 128 | 67 92 127 | 3bitrd |  |-  ( ( A e. S /\ B e. S ) -> ( A. a e. { A , B } A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) <-> ( ( ( ( ( A ( +g ` M ) A ) ( +g ` M ) A ) = ( A ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) /\ ( ( ( A ( +g ` M ) B ) ( +g ` M ) A ) = ( A ( +g ` M ) ( B ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) B ) ( +g ` M ) B ) = ( A ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) /\ ( ( ( ( B ( +g ` M ) A ) ( +g ` M ) A ) = ( B ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) A ) ( +g ` M ) B ) = ( B ( +g ` M ) ( A ( +g ` M ) B ) ) ) /\ ( ( ( B ( +g ` M ) B ) ( +g ` M ) A ) = ( B ( +g ` M ) ( B ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) B ) ( +g ` M ) B ) = ( B ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) ) ) ) | 
						
							| 129 | 128 | 3adant3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A. a e. { A , B } A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) <-> ( ( ( ( ( A ( +g ` M ) A ) ( +g ` M ) A ) = ( A ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) A ) ( +g ` M ) B ) = ( A ( +g ` M ) ( A ( +g ` M ) B ) ) ) /\ ( ( ( A ( +g ` M ) B ) ( +g ` M ) A ) = ( A ( +g ` M ) ( B ( +g ` M ) A ) ) /\ ( ( A ( +g ` M ) B ) ( +g ` M ) B ) = ( A ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) /\ ( ( ( ( B ( +g ` M ) A ) ( +g ` M ) A ) = ( B ( +g ` M ) ( A ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) A ) ( +g ` M ) B ) = ( B ( +g ` M ) ( A ( +g ` M ) B ) ) ) /\ ( ( ( B ( +g ` M ) B ) ( +g ` M ) A ) = ( B ( +g ` M ) ( B ( +g ` M ) A ) ) /\ ( ( B ( +g ` M ) B ) ( +g ` M ) B ) = ( B ( +g ` M ) ( B ( +g ` M ) B ) ) ) ) ) ) ) | 
						
							| 130 | 39 56 129 | mpbir2and |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> A. a e. { A , B } A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) | 
						
							| 131 | 4 130 | syl |  |-  ( ( # ` S ) = 2 -> A. a e. { A , B } A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) | 
						
							| 132 | 2 1 | eqtr2i |  |-  { A , B } = ( Base ` M ) | 
						
							| 133 | 132 8 | issgrp |  |-  ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { A , B } A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) | 
						
							| 134 | 7 131 133 | sylanbrc |  |-  ( ( # ` S ) = 2 -> M e. Smgrp ) |