Metamath Proof Explorer


Theorem sgrp2nmndlem4

Description: Lemma 4 for sgrp2nmnd : M is a semigroup. (Contributed by AV, 29-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S = A B
mgm2nsgrp.b Base M = S
sgrp2nmnd.o + M = x S , y S if x = A A B
Assertion sgrp2nmndlem4 Could not format assertion : No typesetting found for |- ( ( # ` S ) = 2 -> M e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S = A B
2 mgm2nsgrp.b Base M = S
3 sgrp2nmnd.o + M = x S , y S if x = A A B
4 1 hashprdifel S = 2 A S B S A B
5 3simpa A S B S A B A S B S
6 1 2 3 sgrp2nmndlem1 A S B S M Mgm
7 4 5 6 3syl S = 2 M Mgm
8 eqid + M = + M
9 1 2 3 8 sgrp2nmndlem2 A S A S A + M A = A
10 9 oveq1d A S A S A + M A + M A = A + M A
11 9 oveq2d A S A S A + M A + M A = A + M A
12 10 11 eqtr4d A S A S A + M A + M A = A + M A + M A
13 12 anidms A S A + M A + M A = A + M A + M A
14 13 3ad2ant1 A S B S A B A + M A + M A = A + M A + M A
15 9 anidms A S A + M A = A
16 15 adantr A S B S A + M A = A
17 16 oveq1d A S B S A + M A + M B = A + M B
18 1 2 3 8 sgrp2nmndlem2 A S B S A + M B = A
19 18 oveq2d A S B S A + M A + M B = A + M A
20 16 19 18 3eqtr4rd A S B S A + M B = A + M A + M B
21 17 20 eqtrd A S B S A + M A + M B = A + M A + M B
22 21 3adant3 A S B S A B A + M A + M B = A + M A + M B
23 14 22 jca A S B S A B A + M A + M A = A + M A + M A A + M A + M B = A + M A + M B
24 18 3adant3 A S B S A B A + M B = A
25 1 2 3 8 sgrp2nmndlem3 A S B S A B B + M A = B
26 25 oveq2d A S B S A B A + M B + M A = A + M B
27 24 oveq1d A S B S A B A + M B + M A = A + M A
28 15 3ad2ant1 A S B S A B A + M A = A
29 27 28 eqtrd A S B S A B A + M B + M A = A
30 24 26 29 3eqtr4rd A S B S A B A + M B + M A = A + M B + M A
31 simp2 A S B S A B B S
32 1 2 3 8 sgrp2nmndlem3 B S B S A B B + M B = B
33 31 32 syld3an1 A S B S A B B + M B = B
34 33 oveq2d A S B S A B A + M B + M B = A + M B
35 18 oveq1d A S B S A + M B + M B = A + M B
36 35 18 eqtrd A S B S A + M B + M B = A
37 36 3adant3 A S B S A B A + M B + M B = A
38 24 34 37 3eqtr4rd A S B S A B A + M B + M B = A + M B + M B
39 23 30 38 jca32 A S B S A B A + M A + M A = A + M A + M A A + M A + M B = A + M A + M B A + M B + M A = A + M B + M A A + M B + M B = A + M B + M B
40 25 oveq1d A S B S A B B + M A + M A = B + M A
41 28 oveq2d A S B S A B B + M A + M A = B + M A
42 40 41 eqtr4d A S B S A B B + M A + M A = B + M A + M A
43 24 oveq2d A S B S A B B + M A + M B = B + M A
44 25 oveq1d A S B S A B B + M A + M B = B + M B
45 44 33 eqtrd A S B S A B B + M A + M B = B
46 25 43 45 3eqtr4rd A S B S A B B + M A + M B = B + M A + M B
47 42 46 jca A S B S A B B + M A + M A = B + M A + M A B + M A + M B = B + M A + M B
48 25 oveq2d A S B S A B B + M B + M A = B + M B
49 33 oveq1d A S B S A B B + M B + M A = B + M A
50 49 25 eqtrd A S B S A B B + M B + M A = B
51 33 48 50 3eqtr4rd A S B S A B B + M B + M A = B + M B + M A
52 32 oveq1d B S B S A B B + M B + M B = B + M B
53 32 oveq2d B S B S A B B + M B + M B = B + M B
54 52 53 eqtr4d B S B S A B B + M B + M B = B + M B + M B
55 31 54 syld3an1 A S B S A B B + M B + M B = B + M B + M B
56 47 51 55 jca32 A S B S A B B + M A + M A = B + M A + M A B + M A + M B = B + M A + M B B + M B + M A = B + M B + M A B + M B + M B = B + M B + M B
57 oveq1 a = A a + M b = A + M b
58 57 oveq1d a = A a + M b + M c = A + M b + M c
59 oveq1 a = A a + M b + M c = A + M b + M c
60 58 59 eqeq12d a = A a + M b + M c = a + M b + M c A + M b + M c = A + M b + M c
61 60 2ralbidv a = A b A B c A B a + M b + M c = a + M b + M c b A B c A B A + M b + M c = A + M b + M c
62 oveq1 a = B a + M b = B + M b
63 62 oveq1d a = B a + M b + M c = B + M b + M c
64 oveq1 a = B a + M b + M c = B + M b + M c
65 63 64 eqeq12d a = B a + M b + M c = a + M b + M c B + M b + M c = B + M b + M c
66 65 2ralbidv a = B b A B c A B a + M b + M c = a + M b + M c b A B c A B B + M b + M c = B + M b + M c
67 61 66 ralprg A S B S a A B b A B c A B a + M b + M c = a + M b + M c b A B c A B A + M b + M c = A + M b + M c b A B c A B B + M b + M c = B + M b + M c
68 oveq2 b = A A + M b = A + M A
69 68 oveq1d b = A A + M b + M c = A + M A + M c
70 oveq1 b = A b + M c = A + M c
71 70 oveq2d b = A A + M b + M c = A + M A + M c
72 69 71 eqeq12d b = A A + M b + M c = A + M b + M c A + M A + M c = A + M A + M c
73 72 ralbidv b = A c A B A + M b + M c = A + M b + M c c A B A + M A + M c = A + M A + M c
74 oveq2 b = B A + M b = A + M B
75 74 oveq1d b = B A + M b + M c = A + M B + M c
76 oveq1 b = B b + M c = B + M c
77 76 oveq2d b = B A + M b + M c = A + M B + M c
78 75 77 eqeq12d b = B A + M b + M c = A + M b + M c A + M B + M c = A + M B + M c
79 78 ralbidv b = B c A B A + M b + M c = A + M b + M c c A B A + M B + M c = A + M B + M c
80 73 79 ralprg A S B S b A B c A B A + M b + M c = A + M b + M c c A B A + M A + M c = A + M A + M c c A B A + M B + M c = A + M B + M c
81 oveq2 b = A B + M b = B + M A
82 81 oveq1d b = A B + M b + M c = B + M A + M c
83 70 oveq2d b = A B + M b + M c = B + M A + M c
84 82 83 eqeq12d b = A B + M b + M c = B + M b + M c B + M A + M c = B + M A + M c
85 84 ralbidv b = A c A B B + M b + M c = B + M b + M c c A B B + M A + M c = B + M A + M c
86 oveq2 b = B B + M b = B + M B
87 86 oveq1d b = B B + M b + M c = B + M B + M c
88 76 oveq2d b = B B + M b + M c = B + M B + M c
89 87 88 eqeq12d b = B B + M b + M c = B + M b + M c B + M B + M c = B + M B + M c
90 89 ralbidv b = B c A B B + M b + M c = B + M b + M c c A B B + M B + M c = B + M B + M c
91 85 90 ralprg A S B S b A B c A B B + M b + M c = B + M b + M c c A B B + M A + M c = B + M A + M c c A B B + M B + M c = B + M B + M c
92 80 91 anbi12d A S B S b A B c A B A + M b + M c = A + M b + M c b A B c A B B + M b + M c = B + M b + M c c A B A + M A + M c = A + M A + M c c A B A + M B + M c = A + M B + M c c A B B + M A + M c = B + M A + M c c A B B + M B + M c = B + M B + M c
93 oveq2 c = A A + M A + M c = A + M A + M A
94 oveq2 c = A A + M c = A + M A
95 94 oveq2d c = A A + M A + M c = A + M A + M A
96 93 95 eqeq12d c = A A + M A + M c = A + M A + M c A + M A + M A = A + M A + M A
97 oveq2 c = B A + M A + M c = A + M A + M B
98 oveq2 c = B A + M c = A + M B
99 98 oveq2d c = B A + M A + M c = A + M A + M B
100 97 99 eqeq12d c = B A + M A + M c = A + M A + M c A + M A + M B = A + M A + M B
101 96 100 ralprg A S B S c A B A + M A + M c = A + M A + M c A + M A + M A = A + M A + M A A + M A + M B = A + M A + M B
102 oveq2 c = A A + M B + M c = A + M B + M A
103 oveq2 c = A B + M c = B + M A
104 103 oveq2d c = A A + M B + M c = A + M B + M A
105 102 104 eqeq12d c = A A + M B + M c = A + M B + M c A + M B + M A = A + M B + M A
106 oveq2 c = B A + M B + M c = A + M B + M B
107 oveq2 c = B B + M c = B + M B
108 107 oveq2d c = B A + M B + M c = A + M B + M B
109 106 108 eqeq12d c = B A + M B + M c = A + M B + M c A + M B + M B = A + M B + M B
110 105 109 ralprg A S B S c A B A + M B + M c = A + M B + M c A + M B + M A = A + M B + M A A + M B + M B = A + M B + M B
111 101 110 anbi12d A S B S c A B A + M A + M c = A + M A + M c c A B A + M B + M c = A + M B + M c A + M A + M A = A + M A + M A A + M A + M B = A + M A + M B A + M B + M A = A + M B + M A A + M B + M B = A + M B + M B
112 oveq2 c = A B + M A + M c = B + M A + M A
113 94 oveq2d c = A B + M A + M c = B + M A + M A
114 112 113 eqeq12d c = A B + M A + M c = B + M A + M c B + M A + M A = B + M A + M A
115 oveq2 c = B B + M A + M c = B + M A + M B
116 98 oveq2d c = B B + M A + M c = B + M A + M B
117 115 116 eqeq12d c = B B + M A + M c = B + M A + M c B + M A + M B = B + M A + M B
118 114 117 ralprg A S B S c A B B + M A + M c = B + M A + M c B + M A + M A = B + M A + M A B + M A + M B = B + M A + M B
119 oveq2 c = A B + M B + M c = B + M B + M A
120 103 oveq2d c = A B + M B + M c = B + M B + M A
121 119 120 eqeq12d c = A B + M B + M c = B + M B + M c B + M B + M A = B + M B + M A
122 oveq2 c = B B + M B + M c = B + M B + M B
123 107 oveq2d c = B B + M B + M c = B + M B + M B
124 122 123 eqeq12d c = B B + M B + M c = B + M B + M c B + M B + M B = B + M B + M B
125 121 124 ralprg A S B S c A B B + M B + M c = B + M B + M c B + M B + M A = B + M B + M A B + M B + M B = B + M B + M B
126 118 125 anbi12d A S B S c A B B + M A + M c = B + M A + M c c A B B + M B + M c = B + M B + M c B + M A + M A = B + M A + M A B + M A + M B = B + M A + M B B + M B + M A = B + M B + M A B + M B + M B = B + M B + M B
127 111 126 anbi12d A S B S c A B A + M A + M c = A + M A + M c c A B A + M B + M c = A + M B + M c c A B B + M A + M c = B + M A + M c c A B B + M B + M c = B + M B + M c A + M A + M A = A + M A + M A A + M A + M B = A + M A + M B A + M B + M A = A + M B + M A A + M B + M B = A + M B + M B B + M A + M A = B + M A + M A B + M A + M B = B + M A + M B B + M B + M A = B + M B + M A B + M B + M B = B + M B + M B
128 67 92 127 3bitrd A S B S a A B b A B c A B a + M b + M c = a + M b + M c A + M A + M A = A + M A + M A A + M A + M B = A + M A + M B A + M B + M A = A + M B + M A A + M B + M B = A + M B + M B B + M A + M A = B + M A + M A B + M A + M B = B + M A + M B B + M B + M A = B + M B + M A B + M B + M B = B + M B + M B
129 128 3adant3 A S B S A B a A B b A B c A B a + M b + M c = a + M b + M c A + M A + M A = A + M A + M A A + M A + M B = A + M A + M B A + M B + M A = A + M B + M A A + M B + M B = A + M B + M B B + M A + M A = B + M A + M A B + M A + M B = B + M A + M B B + M B + M A = B + M B + M A B + M B + M B = B + M B + M B
130 39 56 129 mpbir2and A S B S A B a A B b A B c A B a + M b + M c = a + M b + M c
131 4 130 syl S = 2 a A B b A B c A B a + M b + M c = a + M b + M c
132 2 1 eqtr2i A B = Base M
133 132 8 issgrp Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { A , B } A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. a e. { A , B } A. b e. { A , B } A. c e. { A , B } ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) with typecode |-
134 7 131 133 sylanbrc Could not format ( ( # ` S ) = 2 -> M e. Smgrp ) : No typesetting found for |- ( ( # ` S ) = 2 -> M e. Smgrp ) with typecode |-