Metamath Proof Explorer


Theorem sgrp2nmndlem3

Description: Lemma 3 for sgrp2nmnd . (Contributed by AV, 29-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S = A B
mgm2nsgrp.b Base M = S
sgrp2nmnd.o + M = x S , y S if x = A A B
sgrp2nmnd.p No typesetting found for |- .o. = ( +g ` M ) with typecode |-
Assertion sgrp2nmndlem3 Could not format assertion : No typesetting found for |- ( ( C e. S /\ B e. S /\ A =/= B ) -> ( B .o. C ) = B ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S = A B
2 mgm2nsgrp.b Base M = S
3 sgrp2nmnd.o + M = x S , y S if x = A A B
4 sgrp2nmnd.p Could not format .o. = ( +g ` M ) : No typesetting found for |- .o. = ( +g ` M ) with typecode |-
5 4 3 eqtri Could not format .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) : No typesetting found for |- .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) with typecode |-
6 5 a1i Could not format ( ( C e. S /\ B e. S /\ A =/= B ) -> .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) ) : No typesetting found for |- ( ( C e. S /\ B e. S /\ A =/= B ) -> .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) ) with typecode |-
7 df-ne A B ¬ A = B
8 eqeq2 x = B A = x A = B
9 8 adantr x = B y = C A = x A = B
10 eqcom A = x x = A
11 9 10 bitr3di x = B y = C A = B x = A
12 11 notbid x = B y = C ¬ A = B ¬ x = A
13 12 biimpcd ¬ A = B x = B y = C ¬ x = A
14 7 13 sylbi A B x = B y = C ¬ x = A
15 14 3ad2ant3 C S B S A B x = B y = C ¬ x = A
16 15 imp C S B S A B x = B y = C ¬ x = A
17 16 iffalsed C S B S A B x = B y = C if x = A A B = B
18 simp2 C S B S A B B S
19 simp1 C S B S A B C S
20 6 17 18 19 18 ovmpod Could not format ( ( C e. S /\ B e. S /\ A =/= B ) -> ( B .o. C ) = B ) : No typesetting found for |- ( ( C e. S /\ B e. S /\ A =/= B ) -> ( B .o. C ) = B ) with typecode |-