| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s |  |-  S = { A , B } | 
						
							| 2 |  | mgm2nsgrp.b |  |-  ( Base ` M ) = S | 
						
							| 3 |  | sgrp2nmnd.o |  |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) ) | 
						
							| 4 |  | sgrp2nmnd.p |  |-  .o. = ( +g ` M ) | 
						
							| 5 | 4 3 | eqtri |  |-  .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) | 
						
							| 6 | 5 | a1i |  |-  ( ( C e. S /\ B e. S /\ A =/= B ) -> .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) ) | 
						
							| 7 |  | df-ne |  |-  ( A =/= B <-> -. A = B ) | 
						
							| 8 |  | eqeq2 |  |-  ( x = B -> ( A = x <-> A = B ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( x = B /\ y = C ) -> ( A = x <-> A = B ) ) | 
						
							| 10 |  | eqcom |  |-  ( A = x <-> x = A ) | 
						
							| 11 | 9 10 | bitr3di |  |-  ( ( x = B /\ y = C ) -> ( A = B <-> x = A ) ) | 
						
							| 12 | 11 | notbid |  |-  ( ( x = B /\ y = C ) -> ( -. A = B <-> -. x = A ) ) | 
						
							| 13 | 12 | biimpcd |  |-  ( -. A = B -> ( ( x = B /\ y = C ) -> -. x = A ) ) | 
						
							| 14 | 7 13 | sylbi |  |-  ( A =/= B -> ( ( x = B /\ y = C ) -> -. x = A ) ) | 
						
							| 15 | 14 | 3ad2ant3 |  |-  ( ( C e. S /\ B e. S /\ A =/= B ) -> ( ( x = B /\ y = C ) -> -. x = A ) ) | 
						
							| 16 | 15 | imp |  |-  ( ( ( C e. S /\ B e. S /\ A =/= B ) /\ ( x = B /\ y = C ) ) -> -. x = A ) | 
						
							| 17 | 16 | iffalsed |  |-  ( ( ( C e. S /\ B e. S /\ A =/= B ) /\ ( x = B /\ y = C ) ) -> if ( x = A , A , B ) = B ) | 
						
							| 18 |  | simp2 |  |-  ( ( C e. S /\ B e. S /\ A =/= B ) -> B e. S ) | 
						
							| 19 |  | simp1 |  |-  ( ( C e. S /\ B e. S /\ A =/= B ) -> C e. S ) | 
						
							| 20 | 6 17 18 19 18 | ovmpod |  |-  ( ( C e. S /\ B e. S /\ A =/= B ) -> ( B .o. C ) = B ) |