Metamath Proof Explorer


Theorem sgrp2nmndlem3

Description: Lemma 3 for sgrp2nmnd . (Contributed by AV, 29-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s
|- S = { A , B }
mgm2nsgrp.b
|- ( Base ` M ) = S
sgrp2nmnd.o
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) )
sgrp2nmnd.p
|- .o. = ( +g ` M )
Assertion sgrp2nmndlem3
|- ( ( C e. S /\ B e. S /\ A =/= B ) -> ( B .o. C ) = B )

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s
 |-  S = { A , B }
2 mgm2nsgrp.b
 |-  ( Base ` M ) = S
3 sgrp2nmnd.o
 |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) )
4 sgrp2nmnd.p
 |-  .o. = ( +g ` M )
5 4 3 eqtri
 |-  .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) )
6 5 a1i
 |-  ( ( C e. S /\ B e. S /\ A =/= B ) -> .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) )
7 df-ne
 |-  ( A =/= B <-> -. A = B )
8 eqeq2
 |-  ( x = B -> ( A = x <-> A = B ) )
9 8 adantr
 |-  ( ( x = B /\ y = C ) -> ( A = x <-> A = B ) )
10 eqcom
 |-  ( A = x <-> x = A )
11 9 10 bitr3di
 |-  ( ( x = B /\ y = C ) -> ( A = B <-> x = A ) )
12 11 notbid
 |-  ( ( x = B /\ y = C ) -> ( -. A = B <-> -. x = A ) )
13 12 biimpcd
 |-  ( -. A = B -> ( ( x = B /\ y = C ) -> -. x = A ) )
14 7 13 sylbi
 |-  ( A =/= B -> ( ( x = B /\ y = C ) -> -. x = A ) )
15 14 3ad2ant3
 |-  ( ( C e. S /\ B e. S /\ A =/= B ) -> ( ( x = B /\ y = C ) -> -. x = A ) )
16 15 imp
 |-  ( ( ( C e. S /\ B e. S /\ A =/= B ) /\ ( x = B /\ y = C ) ) -> -. x = A )
17 16 iffalsed
 |-  ( ( ( C e. S /\ B e. S /\ A =/= B ) /\ ( x = B /\ y = C ) ) -> if ( x = A , A , B ) = B )
18 simp2
 |-  ( ( C e. S /\ B e. S /\ A =/= B ) -> B e. S )
19 simp1
 |-  ( ( C e. S /\ B e. S /\ A =/= B ) -> C e. S )
20 6 17 18 19 18 ovmpod
 |-  ( ( C e. S /\ B e. S /\ A =/= B ) -> ( B .o. C ) = B )