Step |
Hyp |
Ref |
Expression |
1 |
|
mgm2nsgrp.s |
|- S = { A , B } |
2 |
|
mgm2nsgrp.b |
|- ( Base ` M ) = S |
3 |
|
sgrp2nmnd.o |
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) ) |
4 |
|
sgrp2nmnd.p |
|- .o. = ( +g ` M ) |
5 |
4 3
|
eqtri |
|- .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) |
6 |
5
|
a1i |
|- ( ( C e. S /\ B e. S /\ A =/= B ) -> .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) ) |
7 |
|
df-ne |
|- ( A =/= B <-> -. A = B ) |
8 |
|
eqeq2 |
|- ( x = B -> ( A = x <-> A = B ) ) |
9 |
8
|
adantr |
|- ( ( x = B /\ y = C ) -> ( A = x <-> A = B ) ) |
10 |
|
eqcom |
|- ( A = x <-> x = A ) |
11 |
9 10
|
bitr3di |
|- ( ( x = B /\ y = C ) -> ( A = B <-> x = A ) ) |
12 |
11
|
notbid |
|- ( ( x = B /\ y = C ) -> ( -. A = B <-> -. x = A ) ) |
13 |
12
|
biimpcd |
|- ( -. A = B -> ( ( x = B /\ y = C ) -> -. x = A ) ) |
14 |
7 13
|
sylbi |
|- ( A =/= B -> ( ( x = B /\ y = C ) -> -. x = A ) ) |
15 |
14
|
3ad2ant3 |
|- ( ( C e. S /\ B e. S /\ A =/= B ) -> ( ( x = B /\ y = C ) -> -. x = A ) ) |
16 |
15
|
imp |
|- ( ( ( C e. S /\ B e. S /\ A =/= B ) /\ ( x = B /\ y = C ) ) -> -. x = A ) |
17 |
16
|
iffalsed |
|- ( ( ( C e. S /\ B e. S /\ A =/= B ) /\ ( x = B /\ y = C ) ) -> if ( x = A , A , B ) = B ) |
18 |
|
simp2 |
|- ( ( C e. S /\ B e. S /\ A =/= B ) -> B e. S ) |
19 |
|
simp1 |
|- ( ( C e. S /\ B e. S /\ A =/= B ) -> C e. S ) |
20 |
6 17 18 19 18
|
ovmpod |
|- ( ( C e. S /\ B e. S /\ A =/= B ) -> ( B .o. C ) = B ) |