Step |
Hyp |
Ref |
Expression |
1 |
|
mgm2nsgrp.s |
|- S = { A , B } |
2 |
|
mgm2nsgrp.b |
|- ( Base ` M ) = S |
3 |
|
sgrp2nmnd.o |
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) ) |
4 |
|
sgrp2nmnd.p |
|- .o. = ( +g ` M ) |
5 |
|
prid1g |
|- ( A e. V -> A e. { A , B } ) |
6 |
5 1
|
eleqtrrdi |
|- ( A e. V -> A e. S ) |
7 |
|
prid2g |
|- ( B e. W -> B e. { A , B } ) |
8 |
7 1
|
eleqtrrdi |
|- ( B e. W -> B e. S ) |
9 |
|
simpl |
|- ( ( A e. S /\ B e. S ) -> A e. S ) |
10 |
1 2 3 4
|
sgrp2nmndlem2 |
|- ( ( A e. S /\ A e. S ) -> ( A .o. A ) = A ) |
11 |
9 10
|
syldan |
|- ( ( A e. S /\ B e. S ) -> ( A .o. A ) = A ) |
12 |
|
oveq1 |
|- ( A = B -> ( A .o. A ) = ( B .o. A ) ) |
13 |
|
id |
|- ( A = B -> A = B ) |
14 |
12 13
|
eqeq12d |
|- ( A = B -> ( ( A .o. A ) = A <-> ( B .o. A ) = B ) ) |
15 |
11 14
|
syl5ib |
|- ( A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) ) |
16 |
|
simprl |
|- ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> A e. S ) |
17 |
|
simprr |
|- ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> B e. S ) |
18 |
|
neqne |
|- ( -. A = B -> A =/= B ) |
19 |
18
|
adantr |
|- ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> A =/= B ) |
20 |
1 2 3 4
|
sgrp2nmndlem3 |
|- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B .o. A ) = B ) |
21 |
16 17 19 20
|
syl3anc |
|- ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> ( B .o. A ) = B ) |
22 |
21
|
ex |
|- ( -. A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) ) |
23 |
15 22
|
pm2.61i |
|- ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) |
24 |
1 2 3 4
|
sgrp2nmndlem2 |
|- ( ( A e. S /\ B e. S ) -> ( A .o. B ) = A ) |
25 |
13 13
|
oveq12d |
|- ( A = B -> ( A .o. A ) = ( B .o. B ) ) |
26 |
25 13
|
eqeq12d |
|- ( A = B -> ( ( A .o. A ) = A <-> ( B .o. B ) = B ) ) |
27 |
11 26
|
syl5ib |
|- ( A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) ) |
28 |
1 2 3 4
|
sgrp2nmndlem3 |
|- ( ( B e. S /\ B e. S /\ A =/= B ) -> ( B .o. B ) = B ) |
29 |
17 17 19 28
|
syl3anc |
|- ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> ( B .o. B ) = B ) |
30 |
29
|
ex |
|- ( -. A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) ) |
31 |
27 30
|
pm2.61i |
|- ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) |
32 |
24 31
|
jca |
|- ( ( A e. S /\ B e. S ) -> ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) |
33 |
11 23 32
|
jca31 |
|- ( ( A e. S /\ B e. S ) -> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) |
34 |
6 8 33
|
syl2an |
|- ( ( A e. V /\ B e. W ) -> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) |
35 |
1
|
raleqi |
|- ( A. y e. S ( y .o. x ) = y <-> A. y e. { A , B } ( y .o. x ) = y ) |
36 |
|
oveq1 |
|- ( y = A -> ( y .o. x ) = ( A .o. x ) ) |
37 |
|
id |
|- ( y = A -> y = A ) |
38 |
36 37
|
eqeq12d |
|- ( y = A -> ( ( y .o. x ) = y <-> ( A .o. x ) = A ) ) |
39 |
|
oveq1 |
|- ( y = B -> ( y .o. x ) = ( B .o. x ) ) |
40 |
|
id |
|- ( y = B -> y = B ) |
41 |
39 40
|
eqeq12d |
|- ( y = B -> ( ( y .o. x ) = y <-> ( B .o. x ) = B ) ) |
42 |
38 41
|
ralprg |
|- ( ( A e. V /\ B e. W ) -> ( A. y e. { A , B } ( y .o. x ) = y <-> ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) ) |
43 |
35 42
|
syl5bb |
|- ( ( A e. V /\ B e. W ) -> ( A. y e. S ( y .o. x ) = y <-> ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) ) |
44 |
43
|
ralbidv |
|- ( ( A e. V /\ B e. W ) -> ( A. x e. S A. y e. S ( y .o. x ) = y <-> A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) ) |
45 |
1
|
raleqi |
|- ( A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> A. x e. { A , B } ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) |
46 |
|
oveq2 |
|- ( x = A -> ( A .o. x ) = ( A .o. A ) ) |
47 |
46
|
eqeq1d |
|- ( x = A -> ( ( A .o. x ) = A <-> ( A .o. A ) = A ) ) |
48 |
|
oveq2 |
|- ( x = A -> ( B .o. x ) = ( B .o. A ) ) |
49 |
48
|
eqeq1d |
|- ( x = A -> ( ( B .o. x ) = B <-> ( B .o. A ) = B ) ) |
50 |
47 49
|
anbi12d |
|- ( x = A -> ( ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( A .o. A ) = A /\ ( B .o. A ) = B ) ) ) |
51 |
|
oveq2 |
|- ( x = B -> ( A .o. x ) = ( A .o. B ) ) |
52 |
51
|
eqeq1d |
|- ( x = B -> ( ( A .o. x ) = A <-> ( A .o. B ) = A ) ) |
53 |
|
oveq2 |
|- ( x = B -> ( B .o. x ) = ( B .o. B ) ) |
54 |
53
|
eqeq1d |
|- ( x = B -> ( ( B .o. x ) = B <-> ( B .o. B ) = B ) ) |
55 |
52 54
|
anbi12d |
|- ( x = B -> ( ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) |
56 |
50 55
|
ralprg |
|- ( ( A e. V /\ B e. W ) -> ( A. x e. { A , B } ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) ) |
57 |
45 56
|
syl5bb |
|- ( ( A e. V /\ B e. W ) -> ( A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) ) |
58 |
44 57
|
bitrd |
|- ( ( A e. V /\ B e. W ) -> ( A. x e. S A. y e. S ( y .o. x ) = y <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) ) |
59 |
34 58
|
mpbird |
|- ( ( A e. V /\ B e. W ) -> A. x e. S A. y e. S ( y .o. x ) = y ) |