Metamath Proof Explorer


Theorem sgrp2rid2

Description: A small semigroup (with two elements) with two right identities which are different if A =/= B . (Contributed by AV, 10-Feb-2020)

Ref Expression
Hypotheses mgm2nsgrp.s
|- S = { A , B }
mgm2nsgrp.b
|- ( Base ` M ) = S
sgrp2nmnd.o
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) )
sgrp2nmnd.p
|- .o. = ( +g ` M )
Assertion sgrp2rid2
|- ( ( A e. V /\ B e. W ) -> A. x e. S A. y e. S ( y .o. x ) = y )

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s
 |-  S = { A , B }
2 mgm2nsgrp.b
 |-  ( Base ` M ) = S
3 sgrp2nmnd.o
 |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) )
4 sgrp2nmnd.p
 |-  .o. = ( +g ` M )
5 prid1g
 |-  ( A e. V -> A e. { A , B } )
6 5 1 eleqtrrdi
 |-  ( A e. V -> A e. S )
7 prid2g
 |-  ( B e. W -> B e. { A , B } )
8 7 1 eleqtrrdi
 |-  ( B e. W -> B e. S )
9 simpl
 |-  ( ( A e. S /\ B e. S ) -> A e. S )
10 1 2 3 4 sgrp2nmndlem2
 |-  ( ( A e. S /\ A e. S ) -> ( A .o. A ) = A )
11 9 10 syldan
 |-  ( ( A e. S /\ B e. S ) -> ( A .o. A ) = A )
12 oveq1
 |-  ( A = B -> ( A .o. A ) = ( B .o. A ) )
13 id
 |-  ( A = B -> A = B )
14 12 13 eqeq12d
 |-  ( A = B -> ( ( A .o. A ) = A <-> ( B .o. A ) = B ) )
15 11 14 syl5ib
 |-  ( A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) )
16 simprl
 |-  ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> A e. S )
17 simprr
 |-  ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> B e. S )
18 neqne
 |-  ( -. A = B -> A =/= B )
19 18 adantr
 |-  ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> A =/= B )
20 1 2 3 4 sgrp2nmndlem3
 |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B .o. A ) = B )
21 16 17 19 20 syl3anc
 |-  ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> ( B .o. A ) = B )
22 21 ex
 |-  ( -. A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) )
23 15 22 pm2.61i
 |-  ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B )
24 1 2 3 4 sgrp2nmndlem2
 |-  ( ( A e. S /\ B e. S ) -> ( A .o. B ) = A )
25 13 13 oveq12d
 |-  ( A = B -> ( A .o. A ) = ( B .o. B ) )
26 25 13 eqeq12d
 |-  ( A = B -> ( ( A .o. A ) = A <-> ( B .o. B ) = B ) )
27 11 26 syl5ib
 |-  ( A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) )
28 1 2 3 4 sgrp2nmndlem3
 |-  ( ( B e. S /\ B e. S /\ A =/= B ) -> ( B .o. B ) = B )
29 17 17 19 28 syl3anc
 |-  ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> ( B .o. B ) = B )
30 29 ex
 |-  ( -. A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) )
31 27 30 pm2.61i
 |-  ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B )
32 24 31 jca
 |-  ( ( A e. S /\ B e. S ) -> ( ( A .o. B ) = A /\ ( B .o. B ) = B ) )
33 11 23 32 jca31
 |-  ( ( A e. S /\ B e. S ) -> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) )
34 6 8 33 syl2an
 |-  ( ( A e. V /\ B e. W ) -> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) )
35 1 raleqi
 |-  ( A. y e. S ( y .o. x ) = y <-> A. y e. { A , B } ( y .o. x ) = y )
36 oveq1
 |-  ( y = A -> ( y .o. x ) = ( A .o. x ) )
37 id
 |-  ( y = A -> y = A )
38 36 37 eqeq12d
 |-  ( y = A -> ( ( y .o. x ) = y <-> ( A .o. x ) = A ) )
39 oveq1
 |-  ( y = B -> ( y .o. x ) = ( B .o. x ) )
40 id
 |-  ( y = B -> y = B )
41 39 40 eqeq12d
 |-  ( y = B -> ( ( y .o. x ) = y <-> ( B .o. x ) = B ) )
42 38 41 ralprg
 |-  ( ( A e. V /\ B e. W ) -> ( A. y e. { A , B } ( y .o. x ) = y <-> ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) )
43 35 42 syl5bb
 |-  ( ( A e. V /\ B e. W ) -> ( A. y e. S ( y .o. x ) = y <-> ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) )
44 43 ralbidv
 |-  ( ( A e. V /\ B e. W ) -> ( A. x e. S A. y e. S ( y .o. x ) = y <-> A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) )
45 1 raleqi
 |-  ( A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> A. x e. { A , B } ( ( A .o. x ) = A /\ ( B .o. x ) = B ) )
46 oveq2
 |-  ( x = A -> ( A .o. x ) = ( A .o. A ) )
47 46 eqeq1d
 |-  ( x = A -> ( ( A .o. x ) = A <-> ( A .o. A ) = A ) )
48 oveq2
 |-  ( x = A -> ( B .o. x ) = ( B .o. A ) )
49 48 eqeq1d
 |-  ( x = A -> ( ( B .o. x ) = B <-> ( B .o. A ) = B ) )
50 47 49 anbi12d
 |-  ( x = A -> ( ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( A .o. A ) = A /\ ( B .o. A ) = B ) ) )
51 oveq2
 |-  ( x = B -> ( A .o. x ) = ( A .o. B ) )
52 51 eqeq1d
 |-  ( x = B -> ( ( A .o. x ) = A <-> ( A .o. B ) = A ) )
53 oveq2
 |-  ( x = B -> ( B .o. x ) = ( B .o. B ) )
54 53 eqeq1d
 |-  ( x = B -> ( ( B .o. x ) = B <-> ( B .o. B ) = B ) )
55 52 54 anbi12d
 |-  ( x = B -> ( ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) )
56 50 55 ralprg
 |-  ( ( A e. V /\ B e. W ) -> ( A. x e. { A , B } ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) )
57 45 56 syl5bb
 |-  ( ( A e. V /\ B e. W ) -> ( A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) )
58 44 57 bitrd
 |-  ( ( A e. V /\ B e. W ) -> ( A. x e. S A. y e. S ( y .o. x ) = y <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) )
59 34 58 mpbird
 |-  ( ( A e. V /\ B e. W ) -> A. x e. S A. y e. S ( y .o. x ) = y )