| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgm2nsgrp.s |  |-  S = { A , B } | 
						
							| 2 |  | mgm2nsgrp.b |  |-  ( Base ` M ) = S | 
						
							| 3 |  | sgrp2nmnd.o |  |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) ) | 
						
							| 4 |  | sgrp2nmnd.p |  |-  .o. = ( +g ` M ) | 
						
							| 5 |  | prid1g |  |-  ( A e. V -> A e. { A , B } ) | 
						
							| 6 | 5 1 | eleqtrrdi |  |-  ( A e. V -> A e. S ) | 
						
							| 7 |  | prid2g |  |-  ( B e. W -> B e. { A , B } ) | 
						
							| 8 | 7 1 | eleqtrrdi |  |-  ( B e. W -> B e. S ) | 
						
							| 9 |  | simpl |  |-  ( ( A e. S /\ B e. S ) -> A e. S ) | 
						
							| 10 | 1 2 3 4 | sgrp2nmndlem2 |  |-  ( ( A e. S /\ A e. S ) -> ( A .o. A ) = A ) | 
						
							| 11 | 9 10 | syldan |  |-  ( ( A e. S /\ B e. S ) -> ( A .o. A ) = A ) | 
						
							| 12 |  | oveq1 |  |-  ( A = B -> ( A .o. A ) = ( B .o. A ) ) | 
						
							| 13 |  | id |  |-  ( A = B -> A = B ) | 
						
							| 14 | 12 13 | eqeq12d |  |-  ( A = B -> ( ( A .o. A ) = A <-> ( B .o. A ) = B ) ) | 
						
							| 15 | 11 14 | imbitrid |  |-  ( A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) ) | 
						
							| 16 |  | simprl |  |-  ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> A e. S ) | 
						
							| 17 |  | simprr |  |-  ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> B e. S ) | 
						
							| 18 |  | neqne |  |-  ( -. A = B -> A =/= B ) | 
						
							| 19 | 18 | adantr |  |-  ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> A =/= B ) | 
						
							| 20 | 1 2 3 4 | sgrp2nmndlem3 |  |-  ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B .o. A ) = B ) | 
						
							| 21 | 16 17 19 20 | syl3anc |  |-  ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> ( B .o. A ) = B ) | 
						
							| 22 | 21 | ex |  |-  ( -. A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) ) | 
						
							| 23 | 15 22 | pm2.61i |  |-  ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) | 
						
							| 24 | 1 2 3 4 | sgrp2nmndlem2 |  |-  ( ( A e. S /\ B e. S ) -> ( A .o. B ) = A ) | 
						
							| 25 | 13 13 | oveq12d |  |-  ( A = B -> ( A .o. A ) = ( B .o. B ) ) | 
						
							| 26 | 25 13 | eqeq12d |  |-  ( A = B -> ( ( A .o. A ) = A <-> ( B .o. B ) = B ) ) | 
						
							| 27 | 11 26 | imbitrid |  |-  ( A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) ) | 
						
							| 28 | 1 2 3 4 | sgrp2nmndlem3 |  |-  ( ( B e. S /\ B e. S /\ A =/= B ) -> ( B .o. B ) = B ) | 
						
							| 29 | 17 17 19 28 | syl3anc |  |-  ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> ( B .o. B ) = B ) | 
						
							| 30 | 29 | ex |  |-  ( -. A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) ) | 
						
							| 31 | 27 30 | pm2.61i |  |-  ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) | 
						
							| 32 | 24 31 | jca |  |-  ( ( A e. S /\ B e. S ) -> ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) | 
						
							| 33 | 11 23 32 | jca31 |  |-  ( ( A e. S /\ B e. S ) -> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) | 
						
							| 34 | 6 8 33 | syl2an |  |-  ( ( A e. V /\ B e. W ) -> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) | 
						
							| 35 | 1 | raleqi |  |-  ( A. y e. S ( y .o. x ) = y <-> A. y e. { A , B } ( y .o. x ) = y ) | 
						
							| 36 |  | oveq1 |  |-  ( y = A -> ( y .o. x ) = ( A .o. x ) ) | 
						
							| 37 |  | id |  |-  ( y = A -> y = A ) | 
						
							| 38 | 36 37 | eqeq12d |  |-  ( y = A -> ( ( y .o. x ) = y <-> ( A .o. x ) = A ) ) | 
						
							| 39 |  | oveq1 |  |-  ( y = B -> ( y .o. x ) = ( B .o. x ) ) | 
						
							| 40 |  | id |  |-  ( y = B -> y = B ) | 
						
							| 41 | 39 40 | eqeq12d |  |-  ( y = B -> ( ( y .o. x ) = y <-> ( B .o. x ) = B ) ) | 
						
							| 42 | 38 41 | ralprg |  |-  ( ( A e. V /\ B e. W ) -> ( A. y e. { A , B } ( y .o. x ) = y <-> ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) ) | 
						
							| 43 | 35 42 | bitrid |  |-  ( ( A e. V /\ B e. W ) -> ( A. y e. S ( y .o. x ) = y <-> ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) ) | 
						
							| 44 | 43 | ralbidv |  |-  ( ( A e. V /\ B e. W ) -> ( A. x e. S A. y e. S ( y .o. x ) = y <-> A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) ) | 
						
							| 45 | 1 | raleqi |  |-  ( A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> A. x e. { A , B } ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) | 
						
							| 46 |  | oveq2 |  |-  ( x = A -> ( A .o. x ) = ( A .o. A ) ) | 
						
							| 47 | 46 | eqeq1d |  |-  ( x = A -> ( ( A .o. x ) = A <-> ( A .o. A ) = A ) ) | 
						
							| 48 |  | oveq2 |  |-  ( x = A -> ( B .o. x ) = ( B .o. A ) ) | 
						
							| 49 | 48 | eqeq1d |  |-  ( x = A -> ( ( B .o. x ) = B <-> ( B .o. A ) = B ) ) | 
						
							| 50 | 47 49 | anbi12d |  |-  ( x = A -> ( ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( A .o. A ) = A /\ ( B .o. A ) = B ) ) ) | 
						
							| 51 |  | oveq2 |  |-  ( x = B -> ( A .o. x ) = ( A .o. B ) ) | 
						
							| 52 | 51 | eqeq1d |  |-  ( x = B -> ( ( A .o. x ) = A <-> ( A .o. B ) = A ) ) | 
						
							| 53 |  | oveq2 |  |-  ( x = B -> ( B .o. x ) = ( B .o. B ) ) | 
						
							| 54 | 53 | eqeq1d |  |-  ( x = B -> ( ( B .o. x ) = B <-> ( B .o. B ) = B ) ) | 
						
							| 55 | 52 54 | anbi12d |  |-  ( x = B -> ( ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) | 
						
							| 56 | 50 55 | ralprg |  |-  ( ( A e. V /\ B e. W ) -> ( A. x e. { A , B } ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) ) | 
						
							| 57 | 45 56 | bitrid |  |-  ( ( A e. V /\ B e. W ) -> ( A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) ) | 
						
							| 58 | 44 57 | bitrd |  |-  ( ( A e. V /\ B e. W ) -> ( A. x e. S A. y e. S ( y .o. x ) = y <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) ) | 
						
							| 59 | 34 58 | mpbird |  |-  ( ( A e. V /\ B e. W ) -> A. x e. S A. y e. S ( y .o. x ) = y ) |