Metamath Proof Explorer


Theorem sgrp2rid2

Description: A small semigroup (with two elements) with two right identities which are different if A =/= B . (Contributed by AV, 10-Feb-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S=AB
mgm2nsgrp.b BaseM=S
sgrp2nmnd.o +M=xS,ySifx=AAB
sgrp2nmnd.p No typesetting found for |- .o. = ( +g ` M ) with typecode |-
Assertion sgrp2rid2 Could not format assertion : No typesetting found for |- ( ( A e. V /\ B e. W ) -> A. x e. S A. y e. S ( y .o. x ) = y ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S=AB
2 mgm2nsgrp.b BaseM=S
3 sgrp2nmnd.o +M=xS,ySifx=AAB
4 sgrp2nmnd.p Could not format .o. = ( +g ` M ) : No typesetting found for |- .o. = ( +g ` M ) with typecode |-
5 prid1g AVAAB
6 5 1 eleqtrrdi AVAS
7 prid2g BWBAB
8 7 1 eleqtrrdi BWBS
9 simpl ASBSAS
10 1 2 3 4 sgrp2nmndlem2 Could not format ( ( A e. S /\ A e. S ) -> ( A .o. A ) = A ) : No typesetting found for |- ( ( A e. S /\ A e. S ) -> ( A .o. A ) = A ) with typecode |-
11 9 10 syldan Could not format ( ( A e. S /\ B e. S ) -> ( A .o. A ) = A ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> ( A .o. A ) = A ) with typecode |-
12 oveq1 Could not format ( A = B -> ( A .o. A ) = ( B .o. A ) ) : No typesetting found for |- ( A = B -> ( A .o. A ) = ( B .o. A ) ) with typecode |-
13 id A=BA=B
14 12 13 eqeq12d Could not format ( A = B -> ( ( A .o. A ) = A <-> ( B .o. A ) = B ) ) : No typesetting found for |- ( A = B -> ( ( A .o. A ) = A <-> ( B .o. A ) = B ) ) with typecode |-
15 11 14 imbitrid Could not format ( A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) ) : No typesetting found for |- ( A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) ) with typecode |-
16 simprl ¬A=BASBSAS
17 simprr ¬A=BASBSBS
18 neqne ¬A=BAB
19 18 adantr ¬A=BASBSAB
20 1 2 3 4 sgrp2nmndlem3 Could not format ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B .o. A ) = B ) : No typesetting found for |- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( B .o. A ) = B ) with typecode |-
21 16 17 19 20 syl3anc Could not format ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> ( B .o. A ) = B ) : No typesetting found for |- ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> ( B .o. A ) = B ) with typecode |-
22 21 ex Could not format ( -. A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) ) : No typesetting found for |- ( -. A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) ) with typecode |-
23 15 22 pm2.61i Could not format ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> ( B .o. A ) = B ) with typecode |-
24 1 2 3 4 sgrp2nmndlem2 Could not format ( ( A e. S /\ B e. S ) -> ( A .o. B ) = A ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> ( A .o. B ) = A ) with typecode |-
25 13 13 oveq12d Could not format ( A = B -> ( A .o. A ) = ( B .o. B ) ) : No typesetting found for |- ( A = B -> ( A .o. A ) = ( B .o. B ) ) with typecode |-
26 25 13 eqeq12d Could not format ( A = B -> ( ( A .o. A ) = A <-> ( B .o. B ) = B ) ) : No typesetting found for |- ( A = B -> ( ( A .o. A ) = A <-> ( B .o. B ) = B ) ) with typecode |-
27 11 26 imbitrid Could not format ( A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) ) : No typesetting found for |- ( A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) ) with typecode |-
28 1 2 3 4 sgrp2nmndlem3 Could not format ( ( B e. S /\ B e. S /\ A =/= B ) -> ( B .o. B ) = B ) : No typesetting found for |- ( ( B e. S /\ B e. S /\ A =/= B ) -> ( B .o. B ) = B ) with typecode |-
29 17 17 19 28 syl3anc Could not format ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> ( B .o. B ) = B ) : No typesetting found for |- ( ( -. A = B /\ ( A e. S /\ B e. S ) ) -> ( B .o. B ) = B ) with typecode |-
30 29 ex Could not format ( -. A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) ) : No typesetting found for |- ( -. A = B -> ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) ) with typecode |-
31 27 30 pm2.61i Could not format ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> ( B .o. B ) = B ) with typecode |-
32 24 31 jca Could not format ( ( A e. S /\ B e. S ) -> ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) with typecode |-
33 11 23 32 jca31 Could not format ( ( A e. S /\ B e. S ) -> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) with typecode |-
34 6 8 33 syl2an Could not format ( ( A e. V /\ B e. W ) -> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) : No typesetting found for |- ( ( A e. V /\ B e. W ) -> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) with typecode |-
35 1 raleqi Could not format ( A. y e. S ( y .o. x ) = y <-> A. y e. { A , B } ( y .o. x ) = y ) : No typesetting found for |- ( A. y e. S ( y .o. x ) = y <-> A. y e. { A , B } ( y .o. x ) = y ) with typecode |-
36 oveq1 Could not format ( y = A -> ( y .o. x ) = ( A .o. x ) ) : No typesetting found for |- ( y = A -> ( y .o. x ) = ( A .o. x ) ) with typecode |-
37 id y=Ay=A
38 36 37 eqeq12d Could not format ( y = A -> ( ( y .o. x ) = y <-> ( A .o. x ) = A ) ) : No typesetting found for |- ( y = A -> ( ( y .o. x ) = y <-> ( A .o. x ) = A ) ) with typecode |-
39 oveq1 Could not format ( y = B -> ( y .o. x ) = ( B .o. x ) ) : No typesetting found for |- ( y = B -> ( y .o. x ) = ( B .o. x ) ) with typecode |-
40 id y=By=B
41 39 40 eqeq12d Could not format ( y = B -> ( ( y .o. x ) = y <-> ( B .o. x ) = B ) ) : No typesetting found for |- ( y = B -> ( ( y .o. x ) = y <-> ( B .o. x ) = B ) ) with typecode |-
42 38 41 ralprg Could not format ( ( A e. V /\ B e. W ) -> ( A. y e. { A , B } ( y .o. x ) = y <-> ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) ) : No typesetting found for |- ( ( A e. V /\ B e. W ) -> ( A. y e. { A , B } ( y .o. x ) = y <-> ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) ) with typecode |-
43 35 42 bitrid Could not format ( ( A e. V /\ B e. W ) -> ( A. y e. S ( y .o. x ) = y <-> ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) ) : No typesetting found for |- ( ( A e. V /\ B e. W ) -> ( A. y e. S ( y .o. x ) = y <-> ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) ) with typecode |-
44 43 ralbidv Could not format ( ( A e. V /\ B e. W ) -> ( A. x e. S A. y e. S ( y .o. x ) = y <-> A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) ) : No typesetting found for |- ( ( A e. V /\ B e. W ) -> ( A. x e. S A. y e. S ( y .o. x ) = y <-> A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) ) with typecode |-
45 1 raleqi Could not format ( A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> A. x e. { A , B } ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) : No typesetting found for |- ( A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> A. x e. { A , B } ( ( A .o. x ) = A /\ ( B .o. x ) = B ) ) with typecode |-
46 oveq2 Could not format ( x = A -> ( A .o. x ) = ( A .o. A ) ) : No typesetting found for |- ( x = A -> ( A .o. x ) = ( A .o. A ) ) with typecode |-
47 46 eqeq1d Could not format ( x = A -> ( ( A .o. x ) = A <-> ( A .o. A ) = A ) ) : No typesetting found for |- ( x = A -> ( ( A .o. x ) = A <-> ( A .o. A ) = A ) ) with typecode |-
48 oveq2 Could not format ( x = A -> ( B .o. x ) = ( B .o. A ) ) : No typesetting found for |- ( x = A -> ( B .o. x ) = ( B .o. A ) ) with typecode |-
49 48 eqeq1d Could not format ( x = A -> ( ( B .o. x ) = B <-> ( B .o. A ) = B ) ) : No typesetting found for |- ( x = A -> ( ( B .o. x ) = B <-> ( B .o. A ) = B ) ) with typecode |-
50 47 49 anbi12d Could not format ( x = A -> ( ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( A .o. A ) = A /\ ( B .o. A ) = B ) ) ) : No typesetting found for |- ( x = A -> ( ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( A .o. A ) = A /\ ( B .o. A ) = B ) ) ) with typecode |-
51 oveq2 Could not format ( x = B -> ( A .o. x ) = ( A .o. B ) ) : No typesetting found for |- ( x = B -> ( A .o. x ) = ( A .o. B ) ) with typecode |-
52 51 eqeq1d Could not format ( x = B -> ( ( A .o. x ) = A <-> ( A .o. B ) = A ) ) : No typesetting found for |- ( x = B -> ( ( A .o. x ) = A <-> ( A .o. B ) = A ) ) with typecode |-
53 oveq2 Could not format ( x = B -> ( B .o. x ) = ( B .o. B ) ) : No typesetting found for |- ( x = B -> ( B .o. x ) = ( B .o. B ) ) with typecode |-
54 53 eqeq1d Could not format ( x = B -> ( ( B .o. x ) = B <-> ( B .o. B ) = B ) ) : No typesetting found for |- ( x = B -> ( ( B .o. x ) = B <-> ( B .o. B ) = B ) ) with typecode |-
55 52 54 anbi12d Could not format ( x = B -> ( ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) : No typesetting found for |- ( x = B -> ( ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) with typecode |-
56 50 55 ralprg Could not format ( ( A e. V /\ B e. W ) -> ( A. x e. { A , B } ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) ) : No typesetting found for |- ( ( A e. V /\ B e. W ) -> ( A. x e. { A , B } ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) ) with typecode |-
57 45 56 bitrid Could not format ( ( A e. V /\ B e. W ) -> ( A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) ) : No typesetting found for |- ( ( A e. V /\ B e. W ) -> ( A. x e. S ( ( A .o. x ) = A /\ ( B .o. x ) = B ) <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) ) with typecode |-
58 44 57 bitrd Could not format ( ( A e. V /\ B e. W ) -> ( A. x e. S A. y e. S ( y .o. x ) = y <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) ) : No typesetting found for |- ( ( A e. V /\ B e. W ) -> ( A. x e. S A. y e. S ( y .o. x ) = y <-> ( ( ( A .o. A ) = A /\ ( B .o. A ) = B ) /\ ( ( A .o. B ) = A /\ ( B .o. B ) = B ) ) ) ) with typecode |-
59 34 58 mpbird Could not format ( ( A e. V /\ B e. W ) -> A. x e. S A. y e. S ( y .o. x ) = y ) : No typesetting found for |- ( ( A e. V /\ B e. W ) -> A. x e. S A. y e. S ( y .o. x ) = y ) with typecode |-