Metamath Proof Explorer


Theorem sgrp2rid2ex

Description: A small semigroup (with two elements) with two right identities which are different. (Contributed by AV, 10-Feb-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S = A B
mgm2nsgrp.b Base M = S
sgrp2nmnd.o + M = x S , y S if x = A A B
sgrp2nmnd.p No typesetting found for |- .o. = ( +g ` M ) with typecode |-
Assertion sgrp2rid2ex Could not format assertion : No typesetting found for |- ( ( # ` S ) = 2 -> E. x e. S E. z e. S A. y e. S ( x =/= z /\ ( y .o. x ) = y /\ ( y .o. z ) = y ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S = A B
2 mgm2nsgrp.b Base M = S
3 sgrp2nmnd.o + M = x S , y S if x = A A B
4 sgrp2nmnd.p Could not format .o. = ( +g ` M ) : No typesetting found for |- .o. = ( +g ` M ) with typecode |-
5 1 hashprdifel S = 2 A S B S A B
6 simp1 A S B S A B A S
7 simp2 A S B S A B B S
8 simpl3 A S B S A B y S A B
9 8 ralrimiva A S B S A B y S A B
10 1 2 3 4 sgrp2rid2 Could not format ( ( A e. S /\ B e. S ) -> A. x e. S A. y e. S ( y .o. x ) = y ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> A. x e. S A. y e. S ( y .o. x ) = y ) with typecode |-
11 oveq2 Could not format ( x = A -> ( y .o. x ) = ( y .o. A ) ) : No typesetting found for |- ( x = A -> ( y .o. x ) = ( y .o. A ) ) with typecode |-
12 11 eqeq1d Could not format ( x = A -> ( ( y .o. x ) = y <-> ( y .o. A ) = y ) ) : No typesetting found for |- ( x = A -> ( ( y .o. x ) = y <-> ( y .o. A ) = y ) ) with typecode |-
13 12 ralbidv Could not format ( x = A -> ( A. y e. S ( y .o. x ) = y <-> A. y e. S ( y .o. A ) = y ) ) : No typesetting found for |- ( x = A -> ( A. y e. S ( y .o. x ) = y <-> A. y e. S ( y .o. A ) = y ) ) with typecode |-
14 13 rspcv Could not format ( A e. S -> ( A. x e. S A. y e. S ( y .o. x ) = y -> A. y e. S ( y .o. A ) = y ) ) : No typesetting found for |- ( A e. S -> ( A. x e. S A. y e. S ( y .o. x ) = y -> A. y e. S ( y .o. A ) = y ) ) with typecode |-
15 14 adantr Could not format ( ( A e. S /\ B e. S ) -> ( A. x e. S A. y e. S ( y .o. x ) = y -> A. y e. S ( y .o. A ) = y ) ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> ( A. x e. S A. y e. S ( y .o. x ) = y -> A. y e. S ( y .o. A ) = y ) ) with typecode |-
16 10 15 mpd Could not format ( ( A e. S /\ B e. S ) -> A. y e. S ( y .o. A ) = y ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> A. y e. S ( y .o. A ) = y ) with typecode |-
17 16 3adant3 Could not format ( ( A e. S /\ B e. S /\ A =/= B ) -> A. y e. S ( y .o. A ) = y ) : No typesetting found for |- ( ( A e. S /\ B e. S /\ A =/= B ) -> A. y e. S ( y .o. A ) = y ) with typecode |-
18 oveq2 Could not format ( x = B -> ( y .o. x ) = ( y .o. B ) ) : No typesetting found for |- ( x = B -> ( y .o. x ) = ( y .o. B ) ) with typecode |-
19 18 eqeq1d Could not format ( x = B -> ( ( y .o. x ) = y <-> ( y .o. B ) = y ) ) : No typesetting found for |- ( x = B -> ( ( y .o. x ) = y <-> ( y .o. B ) = y ) ) with typecode |-
20 19 ralbidv Could not format ( x = B -> ( A. y e. S ( y .o. x ) = y <-> A. y e. S ( y .o. B ) = y ) ) : No typesetting found for |- ( x = B -> ( A. y e. S ( y .o. x ) = y <-> A. y e. S ( y .o. B ) = y ) ) with typecode |-
21 20 rspcv Could not format ( B e. S -> ( A. x e. S A. y e. S ( y .o. x ) = y -> A. y e. S ( y .o. B ) = y ) ) : No typesetting found for |- ( B e. S -> ( A. x e. S A. y e. S ( y .o. x ) = y -> A. y e. S ( y .o. B ) = y ) ) with typecode |-
22 21 adantl Could not format ( ( A e. S /\ B e. S ) -> ( A. x e. S A. y e. S ( y .o. x ) = y -> A. y e. S ( y .o. B ) = y ) ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> ( A. x e. S A. y e. S ( y .o. x ) = y -> A. y e. S ( y .o. B ) = y ) ) with typecode |-
23 10 22 mpd Could not format ( ( A e. S /\ B e. S ) -> A. y e. S ( y .o. B ) = y ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> A. y e. S ( y .o. B ) = y ) with typecode |-
24 23 3adant3 Could not format ( ( A e. S /\ B e. S /\ A =/= B ) -> A. y e. S ( y .o. B ) = y ) : No typesetting found for |- ( ( A e. S /\ B e. S /\ A =/= B ) -> A. y e. S ( y .o. B ) = y ) with typecode |-
25 r19.26-3 Could not format ( A. y e. S ( A =/= B /\ ( y .o. A ) = y /\ ( y .o. B ) = y ) <-> ( A. y e. S A =/= B /\ A. y e. S ( y .o. A ) = y /\ A. y e. S ( y .o. B ) = y ) ) : No typesetting found for |- ( A. y e. S ( A =/= B /\ ( y .o. A ) = y /\ ( y .o. B ) = y ) <-> ( A. y e. S A =/= B /\ A. y e. S ( y .o. A ) = y /\ A. y e. S ( y .o. B ) = y ) ) with typecode |-
26 9 17 24 25 syl3anbrc Could not format ( ( A e. S /\ B e. S /\ A =/= B ) -> A. y e. S ( A =/= B /\ ( y .o. A ) = y /\ ( y .o. B ) = y ) ) : No typesetting found for |- ( ( A e. S /\ B e. S /\ A =/= B ) -> A. y e. S ( A =/= B /\ ( y .o. A ) = y /\ ( y .o. B ) = y ) ) with typecode |-
27 6 7 26 3jca Could not format ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A e. S /\ B e. S /\ A. y e. S ( A =/= B /\ ( y .o. A ) = y /\ ( y .o. B ) = y ) ) ) : No typesetting found for |- ( ( A e. S /\ B e. S /\ A =/= B ) -> ( A e. S /\ B e. S /\ A. y e. S ( A =/= B /\ ( y .o. A ) = y /\ ( y .o. B ) = y ) ) ) with typecode |-
28 neeq1 x = A x z A z
29 biidd Could not format ( x = A -> ( ( y .o. z ) = y <-> ( y .o. z ) = y ) ) : No typesetting found for |- ( x = A -> ( ( y .o. z ) = y <-> ( y .o. z ) = y ) ) with typecode |-
30 28 12 29 3anbi123d Could not format ( x = A -> ( ( x =/= z /\ ( y .o. x ) = y /\ ( y .o. z ) = y ) <-> ( A =/= z /\ ( y .o. A ) = y /\ ( y .o. z ) = y ) ) ) : No typesetting found for |- ( x = A -> ( ( x =/= z /\ ( y .o. x ) = y /\ ( y .o. z ) = y ) <-> ( A =/= z /\ ( y .o. A ) = y /\ ( y .o. z ) = y ) ) ) with typecode |-
31 30 ralbidv Could not format ( x = A -> ( A. y e. S ( x =/= z /\ ( y .o. x ) = y /\ ( y .o. z ) = y ) <-> A. y e. S ( A =/= z /\ ( y .o. A ) = y /\ ( y .o. z ) = y ) ) ) : No typesetting found for |- ( x = A -> ( A. y e. S ( x =/= z /\ ( y .o. x ) = y /\ ( y .o. z ) = y ) <-> A. y e. S ( A =/= z /\ ( y .o. A ) = y /\ ( y .o. z ) = y ) ) ) with typecode |-
32 neeq2 z = B A z A B
33 biidd Could not format ( z = B -> ( ( y .o. A ) = y <-> ( y .o. A ) = y ) ) : No typesetting found for |- ( z = B -> ( ( y .o. A ) = y <-> ( y .o. A ) = y ) ) with typecode |-
34 oveq2 Could not format ( z = B -> ( y .o. z ) = ( y .o. B ) ) : No typesetting found for |- ( z = B -> ( y .o. z ) = ( y .o. B ) ) with typecode |-
35 34 eqeq1d Could not format ( z = B -> ( ( y .o. z ) = y <-> ( y .o. B ) = y ) ) : No typesetting found for |- ( z = B -> ( ( y .o. z ) = y <-> ( y .o. B ) = y ) ) with typecode |-
36 32 33 35 3anbi123d Could not format ( z = B -> ( ( A =/= z /\ ( y .o. A ) = y /\ ( y .o. z ) = y ) <-> ( A =/= B /\ ( y .o. A ) = y /\ ( y .o. B ) = y ) ) ) : No typesetting found for |- ( z = B -> ( ( A =/= z /\ ( y .o. A ) = y /\ ( y .o. z ) = y ) <-> ( A =/= B /\ ( y .o. A ) = y /\ ( y .o. B ) = y ) ) ) with typecode |-
37 36 ralbidv Could not format ( z = B -> ( A. y e. S ( A =/= z /\ ( y .o. A ) = y /\ ( y .o. z ) = y ) <-> A. y e. S ( A =/= B /\ ( y .o. A ) = y /\ ( y .o. B ) = y ) ) ) : No typesetting found for |- ( z = B -> ( A. y e. S ( A =/= z /\ ( y .o. A ) = y /\ ( y .o. z ) = y ) <-> A. y e. S ( A =/= B /\ ( y .o. A ) = y /\ ( y .o. B ) = y ) ) ) with typecode |-
38 31 37 rspc2ev Could not format ( ( A e. S /\ B e. S /\ A. y e. S ( A =/= B /\ ( y .o. A ) = y /\ ( y .o. B ) = y ) ) -> E. x e. S E. z e. S A. y e. S ( x =/= z /\ ( y .o. x ) = y /\ ( y .o. z ) = y ) ) : No typesetting found for |- ( ( A e. S /\ B e. S /\ A. y e. S ( A =/= B /\ ( y .o. A ) = y /\ ( y .o. B ) = y ) ) -> E. x e. S E. z e. S A. y e. S ( x =/= z /\ ( y .o. x ) = y /\ ( y .o. z ) = y ) ) with typecode |-
39 5 27 38 3syl Could not format ( ( # ` S ) = 2 -> E. x e. S E. z e. S A. y e. S ( x =/= z /\ ( y .o. x ) = y /\ ( y .o. z ) = y ) ) : No typesetting found for |- ( ( # ` S ) = 2 -> E. x e. S E. z e. S A. y e. S ( x =/= z /\ ( y .o. x ) = y /\ ( y .o. z ) = y ) ) with typecode |-