Metamath Proof Explorer


Theorem sgrp2nmndlem2

Description: Lemma 2 for sgrp2nmnd . (Contributed by AV, 29-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s
|- S = { A , B }
mgm2nsgrp.b
|- ( Base ` M ) = S
sgrp2nmnd.o
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) )
sgrp2nmnd.p
|- .o. = ( +g ` M )
Assertion sgrp2nmndlem2
|- ( ( A e. S /\ C e. S ) -> ( A .o. C ) = A )

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s
 |-  S = { A , B }
2 mgm2nsgrp.b
 |-  ( Base ` M ) = S
3 sgrp2nmnd.o
 |-  ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) )
4 sgrp2nmnd.p
 |-  .o. = ( +g ` M )
5 4 3 eqtri
 |-  .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) )
6 5 a1i
 |-  ( ( A e. S /\ C e. S ) -> .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) )
7 iftrue
 |-  ( x = A -> if ( x = A , A , B ) = A )
8 7 ad2antrl
 |-  ( ( ( A e. S /\ C e. S ) /\ ( x = A /\ y = C ) ) -> if ( x = A , A , B ) = A )
9 simpl
 |-  ( ( A e. S /\ C e. S ) -> A e. S )
10 simpr
 |-  ( ( A e. S /\ C e. S ) -> C e. S )
11 6 8 9 10 9 ovmpod
 |-  ( ( A e. S /\ C e. S ) -> ( A .o. C ) = A )