| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgm2nsgrp.s |
|- S = { A , B } |
| 2 |
|
mgm2nsgrp.b |
|- ( Base ` M ) = S |
| 3 |
|
sgrp2nmnd.o |
|- ( +g ` M ) = ( x e. S , y e. S |-> if ( x = A , A , B ) ) |
| 4 |
|
sgrp2nmnd.p |
|- .o. = ( +g ` M ) |
| 5 |
4 3
|
eqtri |
|- .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) |
| 6 |
5
|
a1i |
|- ( ( A e. S /\ C e. S ) -> .o. = ( x e. S , y e. S |-> if ( x = A , A , B ) ) ) |
| 7 |
|
iftrue |
|- ( x = A -> if ( x = A , A , B ) = A ) |
| 8 |
7
|
ad2antrl |
|- ( ( ( A e. S /\ C e. S ) /\ ( x = A /\ y = C ) ) -> if ( x = A , A , B ) = A ) |
| 9 |
|
simpl |
|- ( ( A e. S /\ C e. S ) -> A e. S ) |
| 10 |
|
simpr |
|- ( ( A e. S /\ C e. S ) -> C e. S ) |
| 11 |
6 8 9 10 9
|
ovmpod |
|- ( ( A e. S /\ C e. S ) -> ( A .o. C ) = A ) |