Metamath Proof Explorer


Theorem sgrp2nmndlem5

Description: Lemma 5 for sgrp2nmnd : M is not a monoid. (Contributed by AV, 29-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S=AB
mgm2nsgrp.b BaseM=S
sgrp2nmnd.o +M=xS,ySifx=AAB
Assertion sgrp2nmndlem5 S=2MMnd

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S=AB
2 mgm2nsgrp.b BaseM=S
3 sgrp2nmnd.o +M=xS,ySifx=AAB
4 1 hashprdifel S=2ASBSAB
5 eqid +M=+M
6 1 2 3 5 sgrp2nmndlem2 ASBSA+MB=A
7 6 3adant3 ASBSABA+MB=A
8 simp3 ASBSABAB
9 7 8 eqnetrd ASBSABA+MBB
10 9 olcd ASBSABA+MAAA+MBB
11 oveq2 y=AA+My=A+MA
12 id y=Ay=A
13 11 12 neeq12d y=AA+MyyA+MAA
14 oveq2 y=BA+My=A+MB
15 id y=By=B
16 14 15 neeq12d y=BA+MyyA+MBB
17 13 16 rexprg ASBSyABA+MyyA+MAAA+MBB
18 17 3adant3 ASBSAByABA+MyyA+MAAA+MBB
19 10 18 mpbird ASBSAByABA+Myy
20 1 2 3 5 sgrp2nmndlem3 ASBSABB+MA=B
21 necom ABBA
22 df-ne BA¬B=A
23 21 22 sylbb AB¬B=A
24 23 3ad2ant3 ASBSAB¬B=A
25 24 adantr ASBSABB+MA=B¬B=A
26 eqeq1 B+MA=BB+MA=AB=A
27 26 adantl ASBSABB+MA=BB+MA=AB=A
28 25 27 mtbird ASBSABB+MA=B¬B+MA=A
29 20 28 mpdan ASBSAB¬B+MA=A
30 29 neqned ASBSABB+MAA
31 30 orcd ASBSABB+MAAB+MBB
32 oveq2 y=AB+My=B+MA
33 32 12 neeq12d y=AB+MyyB+MAA
34 oveq2 y=BB+My=B+MB
35 34 15 neeq12d y=BB+MyyB+MBB
36 33 35 rexprg ASBSyABB+MyyB+MAAB+MBB
37 36 3adant3 ASBSAByABB+MyyB+MAAB+MBB
38 31 37 mpbird ASBSAByABB+Myy
39 oveq1 x=Ax+My=A+My
40 39 neeq1d x=Ax+MyyA+Myy
41 40 rexbidv x=AyABx+MyyyABA+Myy
42 oveq1 x=Bx+My=B+My
43 42 neeq1d x=Bx+MyyB+Myy
44 43 rexbidv x=ByABx+MyyyABB+Myy
45 41 44 ralprg ASBSxAByABx+MyyyABA+MyyyABB+Myy
46 45 3adant3 ASBSABxAByABx+MyyyABA+MyyyABB+Myy
47 19 38 46 mpbir2and ASBSABxAByABx+Myy
48 2 1 eqtr2i AB=BaseM
49 48 5 isnmnd xAByABx+MyyMMnd
50 4 47 49 3syl S=2MMnd