Description: Lemma for mndtchom and mndtcco . (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| mndtcbas.m | |- ( ph -> M e. Mnd ) |
||
| mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
||
| mndtchom.x | |- ( ph -> X e. B ) |
||
| Assertion | mndtcob | |- ( ph -> X = M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| 2 | mndtcbas.m | |- ( ph -> M e. Mnd ) |
|
| 3 | mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 4 | mndtchom.x | |- ( ph -> X e. B ) |
|
| 5 | 1 2 3 | mndtcbasval | |- ( ph -> B = { M } ) |
| 6 | 4 5 | eleqtrd | |- ( ph -> X e. { M } ) |
| 7 | elsng | |- ( X e. B -> ( X e. { M } <-> X = M ) ) |
|
| 8 | 4 7 | syl | |- ( ph -> ( X e. { M } <-> X = M ) ) |
| 9 | 6 8 | mpbid | |- ( ph -> X = M ) |