Metamath Proof Explorer


Theorem modm1nep1

Description: A nonnegative integer less than a modulus greater than 2 plus/minus one are not equal modulo the modulus. (Contributed by AV, 15-Nov-2025)

Ref Expression
Hypothesis modm1nep1.i
|- I = ( 0 ..^ N )
Assertion modm1nep1
|- ( ( N e. ( ZZ>= ` 3 ) /\ Y e. I ) -> ( ( Y - 1 ) mod N ) =/= ( ( Y + 1 ) mod N ) )

Proof

Step Hyp Ref Expression
1 modm1nep1.i
 |-  I = ( 0 ..^ N )
2 1elfzo1ceilhalf1
 |-  ( N e. ( ZZ>= ` 3 ) -> 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) )
3 2 adantr
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ Y e. I ) -> 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) )
4 eqid
 |-  ( 1 ..^ ( |^ ` ( N / 2 ) ) ) = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
5 4 1 modmknepk
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ Y e. I /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( ( Y - 1 ) mod N ) =/= ( ( Y + 1 ) mod N ) )
6 3 5 mpd3an3
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ Y e. I ) -> ( ( Y - 1 ) mod N ) =/= ( ( Y + 1 ) mod N ) )