Description: A nonnegative integer less than a modulus greater than 2 plus/minus one are not equal modulo the modulus. (Contributed by AV, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | modm1nep1.i | ⊢ 𝐼 = ( 0 ..^ 𝑁 ) | |
| Assertion | modm1nep1 | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑌 ∈ 𝐼 ) → ( ( 𝑌 − 1 ) mod 𝑁 ) ≠ ( ( 𝑌 + 1 ) mod 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modm1nep1.i | ⊢ 𝐼 = ( 0 ..^ 𝑁 ) | |
| 2 | 1elfzo1ceilhalf1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑌 ∈ 𝐼 ) → 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 4 | eqid | ⊢ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) | |
| 5 | 4 1 | modmknepk | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑌 ∈ 𝐼 ∧ 1 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) → ( ( 𝑌 − 1 ) mod 𝑁 ) ≠ ( ( 𝑌 + 1 ) mod 𝑁 ) ) |
| 6 | 3 5 | mpd3an3 | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑌 ∈ 𝐼 ) → ( ( 𝑌 − 1 ) mod 𝑁 ) ≠ ( ( 𝑌 + 1 ) mod 𝑁 ) ) |