| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modm1nep1.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
| 2 |
|
elfzoelz |
⊢ ( 𝑌 ∈ ( 0 ..^ 𝑁 ) → 𝑌 ∈ ℤ ) |
| 3 |
2 1
|
eleq2s |
⊢ ( 𝑌 ∈ 𝐼 → 𝑌 ∈ ℤ ) |
| 4 |
3
|
zcnd |
⊢ ( 𝑌 ∈ 𝐼 → 𝑌 ∈ ℂ ) |
| 5 |
|
2cnd |
⊢ ( 𝑌 ∈ 𝐼 → 2 ∈ ℂ ) |
| 6 |
4 5
|
negsubd |
⊢ ( 𝑌 ∈ 𝐼 → ( 𝑌 + - 2 ) = ( 𝑌 − 2 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( 𝑌 + - 2 ) = ( 𝑌 − 2 ) ) |
| 8 |
7
|
eqcomd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( 𝑌 − 2 ) = ( 𝑌 + - 2 ) ) |
| 9 |
8
|
oveq1d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( ( 𝑌 − 2 ) mod 𝑁 ) = ( ( 𝑌 + - 2 ) mod 𝑁 ) ) |
| 10 |
|
eluz5nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → 𝑁 ∈ ℕ ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 𝑁 ∈ ℕ ) |
| 12 |
|
simpr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 𝑌 ∈ 𝐼 ) |
| 13 |
|
1zzd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 1 ∈ ℤ ) |
| 14 |
|
2z |
⊢ 2 ∈ ℤ |
| 15 |
14
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 2 ∈ ℤ ) |
| 16 |
15
|
znegcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → - 2 ∈ ℤ ) |
| 17 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 18 |
|
2cn |
⊢ 2 ∈ ℂ |
| 19 |
17 18
|
subnegi |
⊢ ( 1 − - 2 ) = ( 1 + 2 ) |
| 20 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
| 21 |
19 20
|
eqtri |
⊢ ( 1 − - 2 ) = 3 |
| 22 |
21
|
fveq2i |
⊢ ( abs ‘ ( 1 − - 2 ) ) = ( abs ‘ 3 ) |
| 23 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 24 |
23
|
nn0absidi |
⊢ ( abs ‘ 3 ) = 3 |
| 25 |
22 24
|
eqtri |
⊢ ( abs ‘ ( 1 − - 2 ) ) = 3 |
| 26 |
|
3nn |
⊢ 3 ∈ ℕ |
| 27 |
26
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → 3 ∈ ℕ ) |
| 28 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ↔ ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) ) |
| 29 |
|
3re |
⊢ 3 ∈ ℝ |
| 30 |
29
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 3 ∈ ℝ ) |
| 31 |
|
5re |
⊢ 5 ∈ ℝ |
| 32 |
31
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 5 ∈ ℝ ) |
| 33 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 𝑁 ∈ ℝ ) |
| 35 |
|
3lt5 |
⊢ 3 < 5 |
| 36 |
35
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 3 < 5 ) |
| 37 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 5 ≤ 𝑁 ) |
| 38 |
30 32 34 36 37
|
ltletrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 3 < 𝑁 ) |
| 39 |
38
|
3adant1 |
⊢ ( ( 5 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) → 3 < 𝑁 ) |
| 40 |
28 39
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → 3 < 𝑁 ) |
| 41 |
|
elfzo1 |
⊢ ( 3 ∈ ( 1 ..^ 𝑁 ) ↔ ( 3 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 3 < 𝑁 ) ) |
| 42 |
27 10 40 41
|
syl3anbrc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) → 3 ∈ ( 1 ..^ 𝑁 ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → 3 ∈ ( 1 ..^ 𝑁 ) ) |
| 44 |
25 43
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( abs ‘ ( 1 − - 2 ) ) ∈ ( 1 ..^ 𝑁 ) ) |
| 45 |
1
|
mod2addne |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑌 ∈ 𝐼 ∧ 1 ∈ ℤ ∧ - 2 ∈ ℤ ) ∧ ( abs ‘ ( 1 − - 2 ) ) ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝑌 + 1 ) mod 𝑁 ) ≠ ( ( 𝑌 + - 2 ) mod 𝑁 ) ) |
| 46 |
11 12 13 16 44 45
|
syl131anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( ( 𝑌 + 1 ) mod 𝑁 ) ≠ ( ( 𝑌 + - 2 ) mod 𝑁 ) ) |
| 47 |
46
|
necomd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( ( 𝑌 + - 2 ) mod 𝑁 ) ≠ ( ( 𝑌 + 1 ) mod 𝑁 ) ) |
| 48 |
9 47
|
eqnetrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ∧ 𝑌 ∈ 𝐼 ) → ( ( 𝑌 − 2 ) mod 𝑁 ) ≠ ( ( 𝑌 + 1 ) mod 𝑁 ) ) |