| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modnegd.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
modnegd.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
modnegd.3 |
|- ( ph -> C e. RR+ ) |
| 4 |
|
modnegd.4 |
|- ( ph -> ( A mod C ) = ( B mod C ) ) |
| 5 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 6 |
5
|
znegcld |
|- ( ph -> -u 1 e. ZZ ) |
| 7 |
|
modmul1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( -u 1 e. ZZ /\ C e. RR+ ) /\ ( A mod C ) = ( B mod C ) ) -> ( ( A x. -u 1 ) mod C ) = ( ( B x. -u 1 ) mod C ) ) |
| 8 |
1 2 6 3 4 7
|
syl221anc |
|- ( ph -> ( ( A x. -u 1 ) mod C ) = ( ( B x. -u 1 ) mod C ) ) |
| 9 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 10 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 11 |
10
|
negcld |
|- ( ph -> -u 1 e. CC ) |
| 12 |
9 11
|
mulcomd |
|- ( ph -> ( A x. -u 1 ) = ( -u 1 x. A ) ) |
| 13 |
9
|
mulm1d |
|- ( ph -> ( -u 1 x. A ) = -u A ) |
| 14 |
12 13
|
eqtrd |
|- ( ph -> ( A x. -u 1 ) = -u A ) |
| 15 |
14
|
oveq1d |
|- ( ph -> ( ( A x. -u 1 ) mod C ) = ( -u A mod C ) ) |
| 16 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 17 |
16 11
|
mulcomd |
|- ( ph -> ( B x. -u 1 ) = ( -u 1 x. B ) ) |
| 18 |
16
|
mulm1d |
|- ( ph -> ( -u 1 x. B ) = -u B ) |
| 19 |
17 18
|
eqtrd |
|- ( ph -> ( B x. -u 1 ) = -u B ) |
| 20 |
19
|
oveq1d |
|- ( ph -> ( ( B x. -u 1 ) mod C ) = ( -u B mod C ) ) |
| 21 |
8 15 20
|
3eqtr3d |
|- ( ph -> ( -u A mod C ) = ( -u B mod C ) ) |