| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|- (/) e. _V |
| 2 |
|
eqeq2 |
|- ( g = (/) -> ( f = g <-> f = (/) ) ) |
| 3 |
2
|
imbi2d |
|- ( g = (/) -> ( ( f : A --> (/) -> f = g ) <-> ( f : A --> (/) -> f = (/) ) ) ) |
| 4 |
3
|
albidv |
|- ( g = (/) -> ( A. f ( f : A --> (/) -> f = g ) <-> A. f ( f : A --> (/) -> f = (/) ) ) ) |
| 5 |
1 4
|
spcev |
|- ( A. f ( f : A --> (/) -> f = (/) ) -> E. g A. f ( f : A --> (/) -> f = g ) ) |
| 6 |
|
f00 |
|- ( f : A --> (/) <-> ( f = (/) /\ A = (/) ) ) |
| 7 |
6
|
simplbi |
|- ( f : A --> (/) -> f = (/) ) |
| 8 |
5 7
|
mpg |
|- E. g A. f ( f : A --> (/) -> f = g ) |
| 9 |
|
df-mo |
|- ( E* f f : A --> (/) <-> E. g A. f ( f : A --> (/) -> f = g ) ) |
| 10 |
8 9
|
mpbir |
|- E* f f : A --> (/) |