| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sectmon.b |
|- B = ( Base ` C ) |
| 2 |
|
sectmon.m |
|- M = ( Mono ` C ) |
| 3 |
|
sectmon.s |
|- S = ( Sect ` C ) |
| 4 |
|
sectmon.c |
|- ( ph -> C e. Cat ) |
| 5 |
|
sectmon.x |
|- ( ph -> X e. B ) |
| 6 |
|
sectmon.y |
|- ( ph -> Y e. B ) |
| 7 |
|
monsect.n |
|- N = ( Inv ` C ) |
| 8 |
|
monsect.1 |
|- ( ph -> F e. ( X M Y ) ) |
| 9 |
|
monsect.2 |
|- ( ph -> G ( Y S X ) F ) |
| 10 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 11 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 12 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 13 |
1 10 11 12 3 4 6 5
|
issect |
|- ( ph -> ( G ( Y S X ) F <-> ( G e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) G ) = ( ( Id ` C ) ` Y ) ) ) ) |
| 14 |
9 13
|
mpbid |
|- ( ph -> ( G e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) G ) = ( ( Id ` C ) ` Y ) ) ) |
| 15 |
14
|
simp3d |
|- ( ph -> ( F ( <. Y , X >. ( comp ` C ) Y ) G ) = ( ( Id ` C ) ` Y ) ) |
| 16 |
15
|
oveq1d |
|- ( ph -> ( ( F ( <. Y , X >. ( comp ` C ) Y ) G ) ( <. X , Y >. ( comp ` C ) Y ) F ) = ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) F ) ) |
| 17 |
14
|
simp2d |
|- ( ph -> F e. ( X ( Hom ` C ) Y ) ) |
| 18 |
14
|
simp1d |
|- ( ph -> G e. ( Y ( Hom ` C ) X ) ) |
| 19 |
1 10 11 4 5 6 5 17 18 6 17
|
catass |
|- ( ph -> ( ( F ( <. Y , X >. ( comp ` C ) Y ) G ) ( <. X , Y >. ( comp ` C ) Y ) F ) = ( F ( <. X , X >. ( comp ` C ) Y ) ( G ( <. X , Y >. ( comp ` C ) X ) F ) ) ) |
| 20 |
1 10 12 4 5 11 6 17
|
catlid |
|- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) F ) = F ) |
| 21 |
1 10 12 4 5 11 6 17
|
catrid |
|- ( ph -> ( F ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) = F ) |
| 22 |
20 21
|
eqtr4d |
|- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) F ) = ( F ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) |
| 23 |
16 19 22
|
3eqtr3d |
|- ( ph -> ( F ( <. X , X >. ( comp ` C ) Y ) ( G ( <. X , Y >. ( comp ` C ) X ) F ) ) = ( F ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) |
| 24 |
1 10 11 4 5 6 5 17 18
|
catcocl |
|- ( ph -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) e. ( X ( Hom ` C ) X ) ) |
| 25 |
1 10 12 4 5
|
catidcl |
|- ( ph -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) ) |
| 26 |
1 10 11 2 4 5 6 5 8 24 25
|
moni |
|- ( ph -> ( ( F ( <. X , X >. ( comp ` C ) Y ) ( G ( <. X , Y >. ( comp ` C ) X ) F ) ) = ( F ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) <-> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
| 27 |
23 26
|
mpbid |
|- ( ph -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) |
| 28 |
1 10 11 12 3 4 5 6 17 18
|
issect2 |
|- ( ph -> ( F ( X S Y ) G <-> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
| 29 |
27 28
|
mpbird |
|- ( ph -> F ( X S Y ) G ) |
| 30 |
1 7 4 5 6 3
|
isinv |
|- ( ph -> ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) ) |
| 31 |
29 9 30
|
mpbir2and |
|- ( ph -> F ( X N Y ) G ) |