| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ismon.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							ismon.h | 
							 |-  H = ( Hom ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							ismon.o | 
							 |-  .x. = ( comp ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							ismon.s | 
							 |-  M = ( Mono ` C )  | 
						
						
							| 5 | 
							
								
							 | 
							ismon.c | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 6 | 
							
								
							 | 
							ismon.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 7 | 
							
								
							 | 
							ismon.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 8 | 
							
								
							 | 
							moni.z | 
							 |-  ( ph -> Z e. B )  | 
						
						
							| 9 | 
							
								
							 | 
							moni.f | 
							 |-  ( ph -> F e. ( X M Y ) )  | 
						
						
							| 10 | 
							
								
							 | 
							moni.g | 
							 |-  ( ph -> G e. ( Z H X ) )  | 
						
						
							| 11 | 
							
								
							 | 
							moni.k | 
							 |-  ( ph -> K e. ( Z H X ) )  | 
						
						
							| 12 | 
							
								1 2 3 4 5 6 7
							 | 
							ismon2 | 
							 |-  ( ph -> ( F e. ( X M Y ) <-> ( F e. ( X H Y ) /\ A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							mpbid | 
							 |-  ( ph -> ( F e. ( X H Y ) /\ A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							simprd | 
							 |-  ( ph -> A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) )  | 
						
						
							| 15 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ph /\ z = Z ) -> G e. ( Z H X ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ z = Z ) -> z = Z )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq1d | 
							 |-  ( ( ph /\ z = Z ) -> ( z H X ) = ( Z H X ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ z = Z ) -> G e. ( z H X ) )  | 
						
						
							| 19 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ph /\ z = Z ) -> K e. ( Z H X ) )  | 
						
						
							| 20 | 
							
								19 17
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ z = Z ) -> K e. ( z H X ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							 |-  ( ( ( ph /\ z = Z ) /\ g = G ) -> K e. ( z H X ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> z = Z )  | 
						
						
							| 23 | 
							
								22
							 | 
							opeq1d | 
							 |-  ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> <. z , X >. = <. Z , X >. )  | 
						
						
							| 24 | 
							
								23
							 | 
							oveq1d | 
							 |-  ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( <. z , X >. .x. Y ) = ( <. Z , X >. .x. Y ) )  | 
						
						
							| 25 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> F = F )  | 
						
						
							| 26 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> g = G )  | 
						
						
							| 27 | 
							
								24 25 26
							 | 
							oveq123d | 
							 |-  ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. Z , X >. .x. Y ) G ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> h = K )  | 
						
						
							| 29 | 
							
								24 25 28
							 | 
							oveq123d | 
							 |-  ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( F ( <. z , X >. .x. Y ) h ) = ( F ( <. Z , X >. .x. Y ) K ) )  | 
						
						
							| 30 | 
							
								27 29
							 | 
							eqeq12d | 
							 |-  ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) <-> ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) ) )  | 
						
						
							| 31 | 
							
								26 28
							 | 
							eqeq12d | 
							 |-  ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( g = h <-> G = K ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							imbi12d | 
							 |-  ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) <-> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) )  | 
						
						
							| 33 | 
							
								21 32
							 | 
							rspcdv | 
							 |-  ( ( ( ph /\ z = Z ) /\ g = G ) -> ( A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) )  | 
						
						
							| 34 | 
							
								18 33
							 | 
							rspcimdv | 
							 |-  ( ( ph /\ z = Z ) -> ( A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) )  | 
						
						
							| 35 | 
							
								8 34
							 | 
							rspcimdv | 
							 |-  ( ph -> ( A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) )  | 
						
						
							| 36 | 
							
								14 35
							 | 
							mpd | 
							 |-  ( ph -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) )  | 
						
						
							| 37 | 
							
								
							 | 
							oveq2 | 
							 |-  ( G = K -> ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							impbid1 | 
							 |-  ( ph -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) <-> G = K ) )  |