Metamath Proof Explorer


Theorem mppsthm

Description: A provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mppsthm.j
|- J = ( mPPSt ` T )
mppsthm.u
|- U = ( mThm ` T )
Assertion mppsthm
|- J C_ U

Proof

Step Hyp Ref Expression
1 mppsthm.j
 |-  J = ( mPPSt ` T )
2 mppsthm.u
 |-  U = ( mThm ` T )
3 eqid
 |-  ( ( mStRed ` T ) ` x ) = ( ( mStRed ` T ) ` x )
4 eqid
 |-  ( mStRed ` T ) = ( mStRed ` T )
5 4 1 2 mthmi
 |-  ( ( x e. J /\ ( ( mStRed ` T ) ` x ) = ( ( mStRed ` T ) ` x ) ) -> x e. U )
6 3 5 mpan2
 |-  ( x e. J -> x e. U )
7 6 ssriv
 |-  J C_ U