Description: A provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mppsthm.j | |- J = ( mPPSt ` T ) |
|
mppsthm.u | |- U = ( mThm ` T ) |
||
Assertion | mppsthm | |- J C_ U |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mppsthm.j | |- J = ( mPPSt ` T ) |
|
2 | mppsthm.u | |- U = ( mThm ` T ) |
|
3 | eqid | |- ( ( mStRed ` T ) ` x ) = ( ( mStRed ` T ) ` x ) |
|
4 | eqid | |- ( mStRed ` T ) = ( mStRed ` T ) |
|
5 | 4 1 2 | mthmi | |- ( ( x e. J /\ ( ( mStRed ` T ) ` x ) = ( ( mStRed ` T ) ` x ) ) -> x e. U ) |
6 | 3 5 | mpan2 | |- ( x e. J -> x e. U ) |
7 | 6 | ssriv | |- J C_ U |