Description: A provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mppsthm.j | |- J = ( mPPSt ` T ) |
|
| mppsthm.u | |- U = ( mThm ` T ) |
||
| Assertion | mppsthm | |- J C_ U |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mppsthm.j | |- J = ( mPPSt ` T ) |
|
| 2 | mppsthm.u | |- U = ( mThm ` T ) |
|
| 3 | eqid | |- ( ( mStRed ` T ) ` x ) = ( ( mStRed ` T ) ` x ) |
|
| 4 | eqid | |- ( mStRed ` T ) = ( mStRed ` T ) |
|
| 5 | 4 1 2 | mthmi | |- ( ( x e. J /\ ( ( mStRed ` T ) ` x ) = ( ( mStRed ` T ) ` x ) ) -> x e. U ) |
| 6 | 3 5 | mpan2 | |- ( x e. J -> x e. U ) |
| 7 | 6 | ssriv | |- J C_ U |