Metamath Proof Explorer


Theorem mppsthm

Description: A provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mppsthm.j 𝐽 = ( mPPSt ‘ 𝑇 )
mppsthm.u 𝑈 = ( mThm ‘ 𝑇 )
Assertion mppsthm 𝐽𝑈

Proof

Step Hyp Ref Expression
1 mppsthm.j 𝐽 = ( mPPSt ‘ 𝑇 )
2 mppsthm.u 𝑈 = ( mThm ‘ 𝑇 )
3 eqid ( ( mStRed ‘ 𝑇 ) ‘ 𝑥 ) = ( ( mStRed ‘ 𝑇 ) ‘ 𝑥 )
4 eqid ( mStRed ‘ 𝑇 ) = ( mStRed ‘ 𝑇 )
5 4 1 2 mthmi ( ( 𝑥𝐽 ∧ ( ( mStRed ‘ 𝑇 ) ‘ 𝑥 ) = ( ( mStRed ‘ 𝑇 ) ‘ 𝑥 ) ) → 𝑥𝑈 )
6 3 5 mpan2 ( 𝑥𝐽𝑥𝑈 )
7 6 ssriv 𝐽𝑈