Description: A provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mppsthm.j | ⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) | |
| mppsthm.u | ⊢ 𝑈 = ( mThm ‘ 𝑇 ) | ||
| Assertion | mppsthm | ⊢ 𝐽 ⊆ 𝑈 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mppsthm.j | ⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) | |
| 2 | mppsthm.u | ⊢ 𝑈 = ( mThm ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( ( mStRed ‘ 𝑇 ) ‘ 𝑥 ) = ( ( mStRed ‘ 𝑇 ) ‘ 𝑥 ) | |
| 4 | eqid | ⊢ ( mStRed ‘ 𝑇 ) = ( mStRed ‘ 𝑇 ) | |
| 5 | 4 1 2 | mthmi | ⊢ ( ( 𝑥 ∈ 𝐽 ∧ ( ( mStRed ‘ 𝑇 ) ‘ 𝑥 ) = ( ( mStRed ‘ 𝑇 ) ‘ 𝑥 ) ) → 𝑥 ∈ 𝑈 ) |
| 6 | 3 5 | mpan2 | ⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ∈ 𝑈 ) |
| 7 | 6 | ssriv | ⊢ 𝐽 ⊆ 𝑈 |