Description: A provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mppsthm.j | ⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) | |
mppsthm.u | ⊢ 𝑈 = ( mThm ‘ 𝑇 ) | ||
Assertion | mppsthm | ⊢ 𝐽 ⊆ 𝑈 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mppsthm.j | ⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) | |
2 | mppsthm.u | ⊢ 𝑈 = ( mThm ‘ 𝑇 ) | |
3 | eqid | ⊢ ( ( mStRed ‘ 𝑇 ) ‘ 𝑥 ) = ( ( mStRed ‘ 𝑇 ) ‘ 𝑥 ) | |
4 | eqid | ⊢ ( mStRed ‘ 𝑇 ) = ( mStRed ‘ 𝑇 ) | |
5 | 4 1 2 | mthmi | ⊢ ( ( 𝑥 ∈ 𝐽 ∧ ( ( mStRed ‘ 𝑇 ) ‘ 𝑥 ) = ( ( mStRed ‘ 𝑇 ) ‘ 𝑥 ) ) → 𝑥 ∈ 𝑈 ) |
6 | 3 5 | mpan2 | ⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ∈ 𝑈 ) |
7 | 6 | ssriv | ⊢ 𝐽 ⊆ 𝑈 |