Metamath Proof Explorer


Theorem mthmblem

Description: Lemma for mthmb . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmb.r 𝑅 = ( mStRed ‘ 𝑇 )
mthmb.u 𝑈 = ( mThm ‘ 𝑇 )
Assertion mthmblem ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) → ( 𝑋𝑈𝑌𝑈 ) )

Proof

Step Hyp Ref Expression
1 mthmb.r 𝑅 = ( mStRed ‘ 𝑇 )
2 mthmb.u 𝑈 = ( mThm ‘ 𝑇 )
3 eqid ( mPPSt ‘ 𝑇 ) = ( mPPSt ‘ 𝑇 )
4 1 3 2 mthmval 𝑈 = ( 𝑅 “ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) )
5 4 eleq2i ( 𝑋𝑈𝑋 ∈ ( 𝑅 “ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) )
6 eqid ( mPreSt ‘ 𝑇 ) = ( mPreSt ‘ 𝑇 )
7 6 1 msrf 𝑅 : ( mPreSt ‘ 𝑇 ) ⟶ ( mPreSt ‘ 𝑇 )
8 ffn ( 𝑅 : ( mPreSt ‘ 𝑇 ) ⟶ ( mPreSt ‘ 𝑇 ) → 𝑅 Fn ( mPreSt ‘ 𝑇 ) )
9 7 8 ax-mp 𝑅 Fn ( mPreSt ‘ 𝑇 )
10 elpreima ( 𝑅 Fn ( mPreSt ‘ 𝑇 ) → ( 𝑋 ∈ ( 𝑅 “ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ) )
11 9 10 ax-mp ( 𝑋 ∈ ( 𝑅 “ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) )
12 5 11 bitri ( 𝑋𝑈 ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) )
13 eleq1 ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) → ( ( 𝑅𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ↔ ( 𝑅𝑌 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) )
14 ffun ( 𝑅 : ( mPreSt ‘ 𝑇 ) ⟶ ( mPreSt ‘ 𝑇 ) → Fun 𝑅 )
15 7 14 ax-mp Fun 𝑅
16 fvelima ( ( Fun 𝑅 ∧ ( 𝑅𝑌 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) → ∃ 𝑥 ∈ ( mPPSt ‘ 𝑇 ) ( 𝑅𝑥 ) = ( 𝑅𝑌 ) )
17 15 16 mpan ( ( 𝑅𝑌 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) → ∃ 𝑥 ∈ ( mPPSt ‘ 𝑇 ) ( 𝑅𝑥 ) = ( 𝑅𝑌 ) )
18 1 3 2 mthmi ( ( 𝑥 ∈ ( mPPSt ‘ 𝑇 ) ∧ ( 𝑅𝑥 ) = ( 𝑅𝑌 ) ) → 𝑌𝑈 )
19 18 rexlimiva ( ∃ 𝑥 ∈ ( mPPSt ‘ 𝑇 ) ( 𝑅𝑥 ) = ( 𝑅𝑌 ) → 𝑌𝑈 )
20 17 19 syl ( ( 𝑅𝑌 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) → 𝑌𝑈 )
21 13 20 syl6bi ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) → ( ( 𝑅𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) → 𝑌𝑈 ) )
22 21 adantld ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) → ( ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) → 𝑌𝑈 ) )
23 12 22 syl5bi ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) → ( 𝑋𝑈𝑌𝑈 ) )