Step |
Hyp |
Ref |
Expression |
1 |
|
mthmb.r |
⊢ 𝑅 = ( mStRed ‘ 𝑇 ) |
2 |
|
mthmb.u |
⊢ 𝑈 = ( mThm ‘ 𝑇 ) |
3 |
|
eqid |
⊢ ( mPPSt ‘ 𝑇 ) = ( mPPSt ‘ 𝑇 ) |
4 |
1 3 2
|
mthmval |
⊢ 𝑈 = ( ◡ 𝑅 “ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) |
5 |
4
|
eleq2i |
⊢ ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ ( ◡ 𝑅 “ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ) |
6 |
|
eqid |
⊢ ( mPreSt ‘ 𝑇 ) = ( mPreSt ‘ 𝑇 ) |
7 |
6 1
|
msrf |
⊢ 𝑅 : ( mPreSt ‘ 𝑇 ) ⟶ ( mPreSt ‘ 𝑇 ) |
8 |
|
ffn |
⊢ ( 𝑅 : ( mPreSt ‘ 𝑇 ) ⟶ ( mPreSt ‘ 𝑇 ) → 𝑅 Fn ( mPreSt ‘ 𝑇 ) ) |
9 |
7 8
|
ax-mp |
⊢ 𝑅 Fn ( mPreSt ‘ 𝑇 ) |
10 |
|
elpreima |
⊢ ( 𝑅 Fn ( mPreSt ‘ 𝑇 ) → ( 𝑋 ∈ ( ◡ 𝑅 “ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ) ) |
11 |
9 10
|
ax-mp |
⊢ ( 𝑋 ∈ ( ◡ 𝑅 “ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ) |
12 |
5 11
|
bitri |
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ) |
13 |
|
eleq1 |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ↔ ( 𝑅 ‘ 𝑌 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ) |
14 |
|
ffun |
⊢ ( 𝑅 : ( mPreSt ‘ 𝑇 ) ⟶ ( mPreSt ‘ 𝑇 ) → Fun 𝑅 ) |
15 |
7 14
|
ax-mp |
⊢ Fun 𝑅 |
16 |
|
fvelima |
⊢ ( ( Fun 𝑅 ∧ ( 𝑅 ‘ 𝑌 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) → ∃ 𝑥 ∈ ( mPPSt ‘ 𝑇 ) ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑌 ) ) |
17 |
15 16
|
mpan |
⊢ ( ( 𝑅 ‘ 𝑌 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) → ∃ 𝑥 ∈ ( mPPSt ‘ 𝑇 ) ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑌 ) ) |
18 |
1 3 2
|
mthmi |
⊢ ( ( 𝑥 ∈ ( mPPSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑌 ) ) → 𝑌 ∈ 𝑈 ) |
19 |
18
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ( mPPSt ‘ 𝑇 ) ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑌 ) → 𝑌 ∈ 𝑈 ) |
20 |
17 19
|
syl |
⊢ ( ( 𝑅 ‘ 𝑌 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) → 𝑌 ∈ 𝑈 ) |
21 |
13 20
|
syl6bi |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) → 𝑌 ∈ 𝑈 ) ) |
22 |
21
|
adantld |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) → 𝑌 ∈ 𝑈 ) ) |
23 |
12 22
|
syl5bi |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( 𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈 ) ) |