| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mthmb.r |
⊢ 𝑅 = ( mStRed ‘ 𝑇 ) |
| 2 |
|
mthmb.u |
⊢ 𝑈 = ( mThm ‘ 𝑇 ) |
| 3 |
|
eqid |
⊢ ( mPPSt ‘ 𝑇 ) = ( mPPSt ‘ 𝑇 ) |
| 4 |
1 3 2
|
mthmval |
⊢ 𝑈 = ( ◡ 𝑅 “ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) |
| 5 |
4
|
eleq2i |
⊢ ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ ( ◡ 𝑅 “ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ) |
| 6 |
|
eqid |
⊢ ( mPreSt ‘ 𝑇 ) = ( mPreSt ‘ 𝑇 ) |
| 7 |
6 1
|
msrf |
⊢ 𝑅 : ( mPreSt ‘ 𝑇 ) ⟶ ( mPreSt ‘ 𝑇 ) |
| 8 |
|
ffn |
⊢ ( 𝑅 : ( mPreSt ‘ 𝑇 ) ⟶ ( mPreSt ‘ 𝑇 ) → 𝑅 Fn ( mPreSt ‘ 𝑇 ) ) |
| 9 |
7 8
|
ax-mp |
⊢ 𝑅 Fn ( mPreSt ‘ 𝑇 ) |
| 10 |
|
elpreima |
⊢ ( 𝑅 Fn ( mPreSt ‘ 𝑇 ) → ( 𝑋 ∈ ( ◡ 𝑅 “ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ) ) |
| 11 |
9 10
|
ax-mp |
⊢ ( 𝑋 ∈ ( ◡ 𝑅 “ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ) |
| 12 |
5 11
|
bitri |
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ) |
| 13 |
|
eleq1 |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ↔ ( 𝑅 ‘ 𝑌 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) ) |
| 14 |
|
ffun |
⊢ ( 𝑅 : ( mPreSt ‘ 𝑇 ) ⟶ ( mPreSt ‘ 𝑇 ) → Fun 𝑅 ) |
| 15 |
7 14
|
ax-mp |
⊢ Fun 𝑅 |
| 16 |
|
fvelima |
⊢ ( ( Fun 𝑅 ∧ ( 𝑅 ‘ 𝑌 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) → ∃ 𝑥 ∈ ( mPPSt ‘ 𝑇 ) ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑌 ) ) |
| 17 |
15 16
|
mpan |
⊢ ( ( 𝑅 ‘ 𝑌 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) → ∃ 𝑥 ∈ ( mPPSt ‘ 𝑇 ) ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑌 ) ) |
| 18 |
1 3 2
|
mthmi |
⊢ ( ( 𝑥 ∈ ( mPPSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑌 ) ) → 𝑌 ∈ 𝑈 ) |
| 19 |
18
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ( mPPSt ‘ 𝑇 ) ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑌 ) → 𝑌 ∈ 𝑈 ) |
| 20 |
17 19
|
syl |
⊢ ( ( 𝑅 ‘ 𝑌 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) → 𝑌 ∈ 𝑈 ) |
| 21 |
13 20
|
biimtrdi |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) → 𝑌 ∈ 𝑈 ) ) |
| 22 |
21
|
adantld |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ ( mPPSt ‘ 𝑇 ) ) ) → 𝑌 ∈ 𝑈 ) ) |
| 23 |
12 22
|
biimtrid |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( 𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈 ) ) |