Step |
Hyp |
Ref |
Expression |
1 |
|
mthmval.r |
⊢ 𝑅 = ( mStRed ‘ 𝑇 ) |
2 |
|
mthmval.j |
⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) |
3 |
|
mthmval.u |
⊢ 𝑈 = ( mThm ‘ 𝑇 ) |
4 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mStRed ‘ 𝑡 ) = ( mStRed ‘ 𝑇 ) ) |
5 |
4 1
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mStRed ‘ 𝑡 ) = 𝑅 ) |
6 |
5
|
cnveqd |
⊢ ( 𝑡 = 𝑇 → ◡ ( mStRed ‘ 𝑡 ) = ◡ 𝑅 ) |
7 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( mPPSt ‘ 𝑡 ) = ( mPPSt ‘ 𝑇 ) ) |
8 |
7 2
|
eqtr4di |
⊢ ( 𝑡 = 𝑇 → ( mPPSt ‘ 𝑡 ) = 𝐽 ) |
9 |
5 8
|
imaeq12d |
⊢ ( 𝑡 = 𝑇 → ( ( mStRed ‘ 𝑡 ) “ ( mPPSt ‘ 𝑡 ) ) = ( 𝑅 “ 𝐽 ) ) |
10 |
6 9
|
imaeq12d |
⊢ ( 𝑡 = 𝑇 → ( ◡ ( mStRed ‘ 𝑡 ) “ ( ( mStRed ‘ 𝑡 ) “ ( mPPSt ‘ 𝑡 ) ) ) = ( ◡ 𝑅 “ ( 𝑅 “ 𝐽 ) ) ) |
11 |
|
df-mthm |
⊢ mThm = ( 𝑡 ∈ V ↦ ( ◡ ( mStRed ‘ 𝑡 ) “ ( ( mStRed ‘ 𝑡 ) “ ( mPPSt ‘ 𝑡 ) ) ) ) |
12 |
|
fvex |
⊢ ( mStRed ‘ 𝑡 ) ∈ V |
13 |
12
|
cnvex |
⊢ ◡ ( mStRed ‘ 𝑡 ) ∈ V |
14 |
|
imaexg |
⊢ ( ◡ ( mStRed ‘ 𝑡 ) ∈ V → ( ◡ ( mStRed ‘ 𝑡 ) “ ( ( mStRed ‘ 𝑡 ) “ ( mPPSt ‘ 𝑡 ) ) ) ∈ V ) |
15 |
13 14
|
ax-mp |
⊢ ( ◡ ( mStRed ‘ 𝑡 ) “ ( ( mStRed ‘ 𝑡 ) “ ( mPPSt ‘ 𝑡 ) ) ) ∈ V |
16 |
10 11 15
|
fvmpt3i |
⊢ ( 𝑇 ∈ V → ( mThm ‘ 𝑇 ) = ( ◡ 𝑅 “ ( 𝑅 “ 𝐽 ) ) ) |
17 |
|
0ima |
⊢ ( ∅ “ ( 𝑅 “ 𝐽 ) ) = ∅ |
18 |
17
|
eqcomi |
⊢ ∅ = ( ∅ “ ( 𝑅 “ 𝐽 ) ) |
19 |
|
fvprc |
⊢ ( ¬ 𝑇 ∈ V → ( mThm ‘ 𝑇 ) = ∅ ) |
20 |
|
fvprc |
⊢ ( ¬ 𝑇 ∈ V → ( mStRed ‘ 𝑇 ) = ∅ ) |
21 |
1 20
|
syl5eq |
⊢ ( ¬ 𝑇 ∈ V → 𝑅 = ∅ ) |
22 |
21
|
cnveqd |
⊢ ( ¬ 𝑇 ∈ V → ◡ 𝑅 = ◡ ∅ ) |
23 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
24 |
22 23
|
eqtrdi |
⊢ ( ¬ 𝑇 ∈ V → ◡ 𝑅 = ∅ ) |
25 |
24
|
imaeq1d |
⊢ ( ¬ 𝑇 ∈ V → ( ◡ 𝑅 “ ( 𝑅 “ 𝐽 ) ) = ( ∅ “ ( 𝑅 “ 𝐽 ) ) ) |
26 |
18 19 25
|
3eqtr4a |
⊢ ( ¬ 𝑇 ∈ V → ( mThm ‘ 𝑇 ) = ( ◡ 𝑅 “ ( 𝑅 “ 𝐽 ) ) ) |
27 |
16 26
|
pm2.61i |
⊢ ( mThm ‘ 𝑇 ) = ( ◡ 𝑅 “ ( 𝑅 “ 𝐽 ) ) |
28 |
3 27
|
eqtri |
⊢ 𝑈 = ( ◡ 𝑅 “ ( 𝑅 “ 𝐽 ) ) |