Metamath Proof Explorer


Theorem mthmval

Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmval.r
|- R = ( mStRed ` T )
mthmval.j
|- J = ( mPPSt ` T )
mthmval.u
|- U = ( mThm ` T )
Assertion mthmval
|- U = ( `' R " ( R " J ) )

Proof

Step Hyp Ref Expression
1 mthmval.r
 |-  R = ( mStRed ` T )
2 mthmval.j
 |-  J = ( mPPSt ` T )
3 mthmval.u
 |-  U = ( mThm ` T )
4 fveq2
 |-  ( t = T -> ( mStRed ` t ) = ( mStRed ` T ) )
5 4 1 eqtr4di
 |-  ( t = T -> ( mStRed ` t ) = R )
6 5 cnveqd
 |-  ( t = T -> `' ( mStRed ` t ) = `' R )
7 fveq2
 |-  ( t = T -> ( mPPSt ` t ) = ( mPPSt ` T ) )
8 7 2 eqtr4di
 |-  ( t = T -> ( mPPSt ` t ) = J )
9 5 8 imaeq12d
 |-  ( t = T -> ( ( mStRed ` t ) " ( mPPSt ` t ) ) = ( R " J ) )
10 6 9 imaeq12d
 |-  ( t = T -> ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) = ( `' R " ( R " J ) ) )
11 df-mthm
 |-  mThm = ( t e. _V |-> ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) )
12 fvex
 |-  ( mStRed ` t ) e. _V
13 12 cnvex
 |-  `' ( mStRed ` t ) e. _V
14 imaexg
 |-  ( `' ( mStRed ` t ) e. _V -> ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) e. _V )
15 13 14 ax-mp
 |-  ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) e. _V
16 10 11 15 fvmpt3i
 |-  ( T e. _V -> ( mThm ` T ) = ( `' R " ( R " J ) ) )
17 0ima
 |-  ( (/) " ( R " J ) ) = (/)
18 17 eqcomi
 |-  (/) = ( (/) " ( R " J ) )
19 fvprc
 |-  ( -. T e. _V -> ( mThm ` T ) = (/) )
20 fvprc
 |-  ( -. T e. _V -> ( mStRed ` T ) = (/) )
21 1 20 syl5eq
 |-  ( -. T e. _V -> R = (/) )
22 21 cnveqd
 |-  ( -. T e. _V -> `' R = `' (/) )
23 cnv0
 |-  `' (/) = (/)
24 22 23 eqtrdi
 |-  ( -. T e. _V -> `' R = (/) )
25 24 imaeq1d
 |-  ( -. T e. _V -> ( `' R " ( R " J ) ) = ( (/) " ( R " J ) ) )
26 18 19 25 3eqtr4a
 |-  ( -. T e. _V -> ( mThm ` T ) = ( `' R " ( R " J ) ) )
27 16 26 pm2.61i
 |-  ( mThm ` T ) = ( `' R " ( R " J ) )
28 3 27 eqtri
 |-  U = ( `' R " ( R " J ) )