Step |
Hyp |
Ref |
Expression |
1 |
|
mthmval.r |
|- R = ( mStRed ` T ) |
2 |
|
mthmval.j |
|- J = ( mPPSt ` T ) |
3 |
|
mthmval.u |
|- U = ( mThm ` T ) |
4 |
|
fveq2 |
|- ( t = T -> ( mStRed ` t ) = ( mStRed ` T ) ) |
5 |
4 1
|
eqtr4di |
|- ( t = T -> ( mStRed ` t ) = R ) |
6 |
5
|
cnveqd |
|- ( t = T -> `' ( mStRed ` t ) = `' R ) |
7 |
|
fveq2 |
|- ( t = T -> ( mPPSt ` t ) = ( mPPSt ` T ) ) |
8 |
7 2
|
eqtr4di |
|- ( t = T -> ( mPPSt ` t ) = J ) |
9 |
5 8
|
imaeq12d |
|- ( t = T -> ( ( mStRed ` t ) " ( mPPSt ` t ) ) = ( R " J ) ) |
10 |
6 9
|
imaeq12d |
|- ( t = T -> ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) = ( `' R " ( R " J ) ) ) |
11 |
|
df-mthm |
|- mThm = ( t e. _V |-> ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) ) |
12 |
|
fvex |
|- ( mStRed ` t ) e. _V |
13 |
12
|
cnvex |
|- `' ( mStRed ` t ) e. _V |
14 |
|
imaexg |
|- ( `' ( mStRed ` t ) e. _V -> ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) e. _V ) |
15 |
13 14
|
ax-mp |
|- ( `' ( mStRed ` t ) " ( ( mStRed ` t ) " ( mPPSt ` t ) ) ) e. _V |
16 |
10 11 15
|
fvmpt3i |
|- ( T e. _V -> ( mThm ` T ) = ( `' R " ( R " J ) ) ) |
17 |
|
0ima |
|- ( (/) " ( R " J ) ) = (/) |
18 |
17
|
eqcomi |
|- (/) = ( (/) " ( R " J ) ) |
19 |
|
fvprc |
|- ( -. T e. _V -> ( mThm ` T ) = (/) ) |
20 |
|
fvprc |
|- ( -. T e. _V -> ( mStRed ` T ) = (/) ) |
21 |
1 20
|
syl5eq |
|- ( -. T e. _V -> R = (/) ) |
22 |
21
|
cnveqd |
|- ( -. T e. _V -> `' R = `' (/) ) |
23 |
|
cnv0 |
|- `' (/) = (/) |
24 |
22 23
|
eqtrdi |
|- ( -. T e. _V -> `' R = (/) ) |
25 |
24
|
imaeq1d |
|- ( -. T e. _V -> ( `' R " ( R " J ) ) = ( (/) " ( R " J ) ) ) |
26 |
18 19 25
|
3eqtr4a |
|- ( -. T e. _V -> ( mThm ` T ) = ( `' R " ( R " J ) ) ) |
27 |
16 26
|
pm2.61i |
|- ( mThm ` T ) = ( `' R " ( R " J ) ) |
28 |
3 27
|
eqtri |
|- U = ( `' R " ( R " J ) ) |