Step |
Hyp |
Ref |
Expression |
1 |
|
mthmval.r |
|- R = ( mStRed ` T ) |
2 |
|
mthmval.j |
|- J = ( mPPSt ` T ) |
3 |
|
mthmval.u |
|- U = ( mThm ` T ) |
4 |
1 2 3
|
mthmval |
|- U = ( `' R " ( R " J ) ) |
5 |
4
|
eleq2i |
|- ( X e. U <-> X e. ( `' R " ( R " J ) ) ) |
6 |
|
eqid |
|- ( mPreSt ` T ) = ( mPreSt ` T ) |
7 |
6 1
|
msrf |
|- R : ( mPreSt ` T ) --> ( mPreSt ` T ) |
8 |
|
ffn |
|- ( R : ( mPreSt ` T ) --> ( mPreSt ` T ) -> R Fn ( mPreSt ` T ) ) |
9 |
7 8
|
ax-mp |
|- R Fn ( mPreSt ` T ) |
10 |
|
elpreima |
|- ( R Fn ( mPreSt ` T ) -> ( X e. ( `' R " ( R " J ) ) <-> ( X e. ( mPreSt ` T ) /\ ( R ` X ) e. ( R " J ) ) ) ) |
11 |
9 10
|
ax-mp |
|- ( X e. ( `' R " ( R " J ) ) <-> ( X e. ( mPreSt ` T ) /\ ( R ` X ) e. ( R " J ) ) ) |
12 |
6 2
|
mppspst |
|- J C_ ( mPreSt ` T ) |
13 |
|
fvelimab |
|- ( ( R Fn ( mPreSt ` T ) /\ J C_ ( mPreSt ` T ) ) -> ( ( R ` X ) e. ( R " J ) <-> E. x e. J ( R ` x ) = ( R ` X ) ) ) |
14 |
9 12 13
|
mp2an |
|- ( ( R ` X ) e. ( R " J ) <-> E. x e. J ( R ` x ) = ( R ` X ) ) |
15 |
14
|
anbi2i |
|- ( ( X e. ( mPreSt ` T ) /\ ( R ` X ) e. ( R " J ) ) <-> ( X e. ( mPreSt ` T ) /\ E. x e. J ( R ` x ) = ( R ` X ) ) ) |
16 |
12
|
sseli |
|- ( x e. J -> x e. ( mPreSt ` T ) ) |
17 |
6 1
|
msrrcl |
|- ( ( R ` x ) = ( R ` X ) -> ( x e. ( mPreSt ` T ) <-> X e. ( mPreSt ` T ) ) ) |
18 |
16 17
|
syl5ibcom |
|- ( x e. J -> ( ( R ` x ) = ( R ` X ) -> X e. ( mPreSt ` T ) ) ) |
19 |
18
|
rexlimiv |
|- ( E. x e. J ( R ` x ) = ( R ` X ) -> X e. ( mPreSt ` T ) ) |
20 |
19
|
pm4.71ri |
|- ( E. x e. J ( R ` x ) = ( R ` X ) <-> ( X e. ( mPreSt ` T ) /\ E. x e. J ( R ` x ) = ( R ` X ) ) ) |
21 |
15 20
|
bitr4i |
|- ( ( X e. ( mPreSt ` T ) /\ ( R ` X ) e. ( R " J ) ) <-> E. x e. J ( R ` x ) = ( R ` X ) ) |
22 |
5 11 21
|
3bitri |
|- ( X e. U <-> E. x e. J ( R ` x ) = ( R ` X ) ) |