Metamath Proof Explorer


Theorem mppspst

Description: A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mppsval.p
|- P = ( mPreSt ` T )
mppsval.j
|- J = ( mPPSt ` T )
Assertion mppspst
|- J C_ P

Proof

Step Hyp Ref Expression
1 mppsval.p
 |-  P = ( mPreSt ` T )
2 mppsval.j
 |-  J = ( mPPSt ` T )
3 eqid
 |-  ( mCls ` T ) = ( mCls ` T )
4 1 2 3 mppsval
 |-  J = { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d ( mCls ` T ) h ) ) }
5 1 2 3 mppspstlem
 |-  { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d ( mCls ` T ) h ) ) } C_ P
6 4 5 eqsstri
 |-  J C_ P