Step |
Hyp |
Ref |
Expression |
1 |
|
mppsval.p |
|- P = ( mPreSt ` T ) |
2 |
|
mppsval.j |
|- J = ( mPPSt ` T ) |
3 |
|
mppsval.c |
|- C = ( mCls ` T ) |
4 |
|
fveq2 |
|- ( t = T -> ( mPreSt ` t ) = ( mPreSt ` T ) ) |
5 |
4 1
|
eqtr4di |
|- ( t = T -> ( mPreSt ` t ) = P ) |
6 |
5
|
eleq2d |
|- ( t = T -> ( <. d , h , a >. e. ( mPreSt ` t ) <-> <. d , h , a >. e. P ) ) |
7 |
|
fveq2 |
|- ( t = T -> ( mCls ` t ) = ( mCls ` T ) ) |
8 |
7 3
|
eqtr4di |
|- ( t = T -> ( mCls ` t ) = C ) |
9 |
8
|
oveqd |
|- ( t = T -> ( d ( mCls ` t ) h ) = ( d C h ) ) |
10 |
9
|
eleq2d |
|- ( t = T -> ( a e. ( d ( mCls ` t ) h ) <-> a e. ( d C h ) ) ) |
11 |
6 10
|
anbi12d |
|- ( t = T -> ( ( <. d , h , a >. e. ( mPreSt ` t ) /\ a e. ( d ( mCls ` t ) h ) ) <-> ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) ) |
12 |
11
|
oprabbidv |
|- ( t = T -> { <. <. d , h >. , a >. | ( <. d , h , a >. e. ( mPreSt ` t ) /\ a e. ( d ( mCls ` t ) h ) ) } = { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } ) |
13 |
|
df-mpps |
|- mPPSt = ( t e. _V |-> { <. <. d , h >. , a >. | ( <. d , h , a >. e. ( mPreSt ` t ) /\ a e. ( d ( mCls ` t ) h ) ) } ) |
14 |
1
|
fvexi |
|- P e. _V |
15 |
1 2 3
|
mppspstlem |
|- { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } C_ P |
16 |
14 15
|
ssexi |
|- { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } e. _V |
17 |
12 13 16
|
fvmpt |
|- ( T e. _V -> ( mPPSt ` T ) = { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } ) |
18 |
|
fvprc |
|- ( -. T e. _V -> ( mPPSt ` T ) = (/) ) |
19 |
|
df-oprab |
|- { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } = { x | E. d E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) } |
20 |
|
abn0 |
|- ( { x | E. d E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) } =/= (/) <-> E. x E. d E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) ) |
21 |
|
elfvex |
|- ( <. d , h , a >. e. ( mPreSt ` T ) -> T e. _V ) |
22 |
21 1
|
eleq2s |
|- ( <. d , h , a >. e. P -> T e. _V ) |
23 |
22
|
ad2antrl |
|- ( ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) -> T e. _V ) |
24 |
23
|
exlimivv |
|- ( E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) -> T e. _V ) |
25 |
24
|
exlimivv |
|- ( E. x E. d E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) -> T e. _V ) |
26 |
20 25
|
sylbi |
|- ( { x | E. d E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) } =/= (/) -> T e. _V ) |
27 |
26
|
necon1bi |
|- ( -. T e. _V -> { x | E. d E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) } = (/) ) |
28 |
19 27
|
syl5eq |
|- ( -. T e. _V -> { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } = (/) ) |
29 |
18 28
|
eqtr4d |
|- ( -. T e. _V -> ( mPPSt ` T ) = { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } ) |
30 |
17 29
|
pm2.61i |
|- ( mPPSt ` T ) = { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } |
31 |
2 30
|
eqtri |
|- J = { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } |